cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100868 a(n) = Sum_{k>0} k^(2n-1)/phi^(2k) where phi = (1+sqrt(5))/2 = A001622.

Original entry on oeis.org

1, 7, 151, 6847, 532231, 63206287, 10645162711, 2413453999327, 708721089607591, 261679010699505967, 118654880542567722871, 64819182599591545006207, 41987713702382161714004551, 31821948327041297758906340047, 27896532358791207565357448388631
Offset: 1

Views

Author

Benoit Cloitre, Jan 08 2005

Keywords

Comments

A bisection of "Stirling-Bernoulli transform" of Fibonacci numbers.

Crossrefs

Row sums of A303675.

Programs

  • Mathematica
    FullSimplify[Table[PolyLog[1 - 2k, GoldenRatio^(-2)], {k, 1, 10}]] (* Vladimir Reshetnikov, Feb 16 2011 *)
  • PARI
    a(n)=round(sum(k=1,500,k^(2*n-1)/((1+sqrt(5))/2)^(2*k)))

Formula

a(n) = A050946(2*n-1).