A050946
"Stirling-Bernoulli transform" of Fibonacci numbers.
Original entry on oeis.org
0, 1, 1, 7, 13, 151, 421, 6847, 25453, 532231, 2473141, 63206287, 352444093, 10645162711, 69251478661, 2413453999327, 17943523153933, 708721089607591, 5927841361456981, 261679010699505967, 2431910546406522973, 118654880542567722871, 1212989379862721528101
Offset: 0
-
with(combinat):
a:= n-> add((-1)^(k+1) *k! *stirling2(n+1, k+1)*fibonacci(k), k=0..n):
seq(a(n), n=0..30); # Alois P. Heinz, May 17 2013
-
CoefficientList[Series[E^x*(1-E^x)/(1-3*E^x+E^(2*x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Aug 13 2013 *)
t[0, k_] := Fibonacci[k]; t[n_, k_] := t[n, k] = (k+1)*(t[n-1, k] - t[n-1, k+1]); a[n_] := t[n, 0] // Abs; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Oct 22 2013, after Paul Curtz *)
-
{a(n)=polcoeff(sum(m=0, n, fibonacci(m)*m!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 20 2011 */
A100872
a(n) = (1/sqrt(5)) * Sum_{k>0} k^(2n)/phi^(2k) where phi = (1+sqrt(5))/2 = A001622.
Original entry on oeis.org
1, 13, 421, 25453, 2473141, 352444093, 69251478661, 17943523153933, 5927841361456981, 2431910546406522973, 1212989379862721528101, 722875495525684291639213, 507275965883448333971692021, 414031618935013558427928710653, 388884101194230308462039862028741
Offset: 1
-
FullSimplify[Table[PolyLog[-2k, GoldenRatio^(-2)]/Sqrt[5], {k, 1, 10}]] (* Vladimir Reshetnikov, Feb 16 2011 *)
T[n_, k_] /; 1 <= k <= n := T[n, k] = k(2k-1) T[n-1, k-1] + k^2 T[n-1, k]; T[, 1] = 1; T[, ] = 0; a[n] := Sum[2^(k-1) T[n, k], {k, 1, n}]; Array[a, 15] (* Jean-François Alcover, Jul 03 2019 *)
-
a(n)=round(1/sqrt(5)*sum(k=1,500,k^(2*n)/((1+sqrt(5))/2)^(2*k)))
A303675
Triangle read by rows: coefficients in the sum of odd powers as expressed by Faulhaber's theorem, T(n, k) for n >= 1, 1 <= k <= n.
Original entry on oeis.org
1, 6, 1, 120, 30, 1, 5040, 1680, 126, 1, 362880, 151200, 17640, 510, 1, 39916800, 19958400, 3160080, 168960, 2046, 1, 6227020800, 3632428800, 726485760, 57657600, 1561560, 8190, 1, 1307674368000, 871782912000, 210680870400, 22313491200, 988107120, 14217840, 32766, 1
Offset: 1
The triangle begins (see the Knuth reference p. 10):
1;
6, 1;
120, 30, 1;
5040, 1680, 126, 1;
362880, 151200, 17640, 510, 1;
39916800, 19958400, 3160080, 168960, 2046, 1;
6227020800, 3632428800, 726485760, 57657600, 1561560, 8190, 1;
.
Let S(n, m) = Sum_{j=1..n} j^m. Faulhaber's formula gives for m = 7 (m odd!):
F(n, 7) = 5040*C(n+4, 8) + 1680*C(n+3, 6) + 126*C(n+2, 4) + C(n+1, 2).
Faulhaber's theorem asserts that for all n >= 1 S(n, 7) = F(n, 7).
If n = 43 the common value is 1600620805036.
- John H. Conway and Richard Guy, The Book of Numbers, Springer (1996), p. 107.
First column is a bisection of
A000142, second column is a bisection of
A001720.
-
T := proc(n,k) local m; m := n-k;
2*(2*m+1)!*add((-1)^(j+m)*(j+1)^(2*n)/((j+m+2)!*(m-j)!), j=0..m) end:
seq(seq(T(n, k), k=1..n), n=1..8); # Peter Luschny, May 09 2018
-
(* After Peter Luschny's above formula. *)
T[n_, k_] := (1/(n-k+1))*Sum[(-1)^j*Binomial[2*(n-k+1), j]*((n-k+1) - j)^(2*n), {j, 0, n-k+1}]; Column[Table[T[n, k], {n, 1, 10}, {k, 1, n}], Center]
-
def A303675(n, k): return factorial(2*(n-k)+1)*A008957(n, k)
for n in (1..7): print([A303675(n, k) for k in (1..n)]) # Peter Luschny, May 10 2018
Showing 1-3 of 3 results.
Comments