cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A241171 Triangle read by rows: Joffe's central differences of zero, T(n,k), 1 <= k <= n.

Original entry on oeis.org

1, 1, 6, 1, 30, 90, 1, 126, 1260, 2520, 1, 510, 13230, 75600, 113400, 1, 2046, 126720, 1580040, 6237000, 7484400, 1, 8190, 1171170, 28828800, 227026800, 681080400, 681080400, 1, 32766, 10663380, 494053560, 6972966000, 39502663200, 95351256000, 81729648000, 1, 131070, 96461910, 8203431600, 196556560200, 1882311631200, 8266953895200, 16672848192000, 12504636144000
Offset: 1

Views

Author

N. J. A. Sloane, Apr 22 2014

Keywords

Comments

T(n,k) gives the number of ordered set partitions of the set {1,2,...,2*n} into k even sized blocks. An example is given below. Cf. A019538 and A156289. - Peter Bala, Aug 20 2014

Examples

			Triangle begins:
1,
1, 6,
1, 30, 90,
1, 126, 1260, 2520,
1, 510, 13230, 75600, 113400,
1, 2046, 126720, 1580040, 6237000, 7484400,
1, 8190, 1171170, 28828800, 227026800, 681080400, 681080400,
1, 32766, 10663380, 494053560, 6972966000, 39502663200, 95351256000, 81729648000,
...
From _Peter Bala_, Aug 20 2014: (Start)
Row 2: [1,6]
k  Ordered set partitions of {1,2,3,4} into k blocks    Number
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1   {1,2,3,4}                                             1
2   {1,2}{3,4}, {3,4}{1,2}, {1,3}{2,4}, {2,4}{1,3},       6
    {1,4}{2,3}, {2,3}{1,4}
(End)
		

References

  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 283.
  • S. A. Joffe, Calculation of the first thirty-two Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math. 47 (1914), 103-126.
  • S. A. Joffe, Calculation of eighteen more, fifty in all, Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math. 48 (1917-1920), 193-271.

Crossrefs

Case m=2 of the polynomials defined in A278073.
Cf. A000680 (diagonal), A094088 (row sums), A000364 (alternating row sums), A281478 (central terms), A327022 (refinement).
Diagonals give A002446, A213455, A241172, A002456.

Programs

  • GAP
    Flat(List([1..10],n->List([1..n],k->1/(2^(k-1))*Sum([1..k],j->(-1)^(k-j)*Binomial(2*k,k-j)*j^(2*n))))); # Muniru A Asiru, Feb 27 2019
  • Maple
    T := proc(n,k) option remember;
    if k > n then 0
    elif k=0 then k^n
    elif k=1 then 1
    else k*(2*k-1)*T(n-1,k-1)+k^2*T(n-1,k); fi;
    end: # Minor edit to make it also work in the (0,0)-offset case. Peter Luschny, Sep 03 2022
    for n from 1 to 12 do lprint([seq(T(n,k), k=1..n)]); od:
  • Mathematica
    T[n_, k_] /; 1 <= k <= n := T[n, k] = k(2k-1) T[n-1, k-1] + k^2 T[n-1, k]; T[, 1] = 1; T[, ] = 0; Table[T[n, k], {n, 1, 9}, {k, 1, n}] (* _Jean-François Alcover, Jul 03 2019 *)
  • Sage
    @cached_function
    def A241171(n, k):
        if n == 0 and k == 0: return 1
        if k < 0 or k > n: return 0
        return (2*k^2 - k)*A241171(n - 1, k - 1) + k^2*A241171(n - 1, k)
    for n in (1..6): print([A241171(n, k) for k in (1..n)]) # Peter Luschny, Sep 06 2017
    

Formula

T(n,k) = 0 if k <= 0 or k > n, = 1 if k=1, otherwise T(n,k) = k*(2*k-1)*T(n-1,k-1) + k^2*T(n-1,k).
Related to Euler numbers A000364 by A000364(n) = (-1)^n*Sum_{k=1..n} (-1)^k*T(n,k). For example, A000364(3) = 61 = 90 - 30 + 1.
From Peter Bala, Aug 20 2014: (Start)
T(n,k) = 1/(2^(k-1))*Sum_{j = 1..k} (-1)^(k-j)*binomial(2*k,k-j)*j^(2*n).
T(n,k) = k!*A156289(n,k) = k!*(2*k-1)!!*A036969.
E.g.f.: A(t,z) := 1/( 1 - t*(cosh(z) - 1) ) = 1 + t*z^2/2! + (t + 6*t^2)*z^4/4! + (t + 30*t^2 + 90*t^3)*z^6/6! + ... satisfies the partial differential equation d^2/dz^2(A) = D(A), where D = t^2*(2*t + 1)*d^2/dt^2 + t*(5*t + 1)*d/dt + t.
Hence the row polynomials R(n,t) satisfy the differential equation R(n+1,t) = t^2*(2*t + 1)*R''(n,t) + t*(5*t + 1)*R'(n,t) + t*R(n,t) with R(0,t) = 1, where ' indicates differentiation w.r.t. t. This is equivalent to the above recurrence equation.
Recurrence for row polynomials: R(n,t) = t*( Sum_{k = 1..n} binomial(2*n,2*k)*R(n-k,t) ) with R(0,t) := 1.
Row sums equal A094088(n) for n >= 1.
A100872(n) = (1/2)*R(n,2). (End)

A304330 T(n, k) = Sum_{j=0..k} (-1)^j*binomial(2*k, j)*(k - j)^(2*n), triangle read by rows, n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 12, 0, 1, 60, 360, 0, 1, 252, 5040, 20160, 0, 1, 1020, 52920, 604800, 1814400, 0, 1, 4092, 506880, 12640320, 99792000, 239500800, 0, 1, 16380, 4684680, 230630400, 3632428800, 21794572800, 43589145600, 0, 1, 65532, 42653520, 3952428480, 111567456000, 1264085222400, 6102480384000, 10461394944000
Offset: 0

Views

Author

Peter Luschny, May 11 2018

Keywords

Examples

			Triangle starts:
  [0] 1;
  [1] 0, 1;
  [2] 0, 1,    12;
  [3] 0, 1,    60,     360;
  [4] 0, 1,   252,    5040,     20160;
  [5] 0, 1,  1020,   52920,    604800,    1814400;
  [6] 0, 1,  4092,  506880,  12640320,   99792000,   239500800;
  [7] 0, 1, 16380, 4684680, 230630400, 3632428800, 21794572800, 43589145600;
		

Crossrefs

Row sums are A100872, T(n,2) = A058896, T(n,n) = A002674, T(n,n-1)= A091032.

Programs

  • Maple
    T := (n, k) -> add((-1)^j*binomial(2*k,j)*(k-j)^(2*n), j=0..k):
    for n from 0 to 8 do seq(T(n, k), k=0..n) od;
  • PARI
    T(n, k) = sum(j=0, k, (-1)^j*binomial(2*k, j)*(k - j)^(2*n)); \\ Michel Marcus, Aug 03 2025

A050946 "Stirling-Bernoulli transform" of Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 7, 13, 151, 421, 6847, 25453, 532231, 2473141, 63206287, 352444093, 10645162711, 69251478661, 2413453999327, 17943523153933, 708721089607591, 5927841361456981, 261679010699505967, 2431910546406522973, 118654880542567722871, 1212989379862721528101
Offset: 0

Views

Author

N. J. A. Sloane, Jan 02 2000

Keywords

Comments

From Paul Curtz, Oct 11 2013: (Start)
Differences table:
0, 1, 1, 7, 13, 151, 421, 6847, ...
1, 0, 6, 6, 138, 270, 6426, ...
-1, 6, 0, 132, 132, 6156, ...
7, -6, 132, 0, 6024, ...
-13, 138, -132, 6024, ...
151, -270, 6156, ...
-421, 6426, ...
6847, ... .
a(n) is an autosequence of first kind: the inverse binomial transform is the sequence signed, the main diagonal is A000004=0's.
The "Stirling-Bernoulli transform" applied to an autosequence of first kind is an autosequence of first kind.
Now consider the Akiyama-Tanigawa transform or algorithm applied to A000045(n):
0, 1, 1, 2, 3, 5, 8, ...
-1, 0, -3, -4, -10, -18, ... = -A006490
-1, 6, 3, 24, 40, ...
-7, 6, -63, -64, ...
-13, 138, 3, ...
-151, 270, ...
-421, ... .
Hence -a(n). The Akiyama-Tanigawa algorithm applied to an autosequence of first kind is an autosequence of first kind.
a(n+5) - a(n+1) = 150, 420, 6840, ... is divisible by 30.
For an autosequence of the second kind, the inverse binomial transform is the sequence signed with the main diagonal double of the first upper diagonal.
The Akiyama-Tanigawa algorithm applied to an autosequence leads to an autosequence of the same kind. Example: the A-T algorithm applied to the autosequence of second kind 1/n leads to the autosequence of the second kind A164555(n)/A027642(n).
Note that a2(n) = 2*a1(n+1) - a1(n) applied to the autosequence of the first kind a1(n) is a corresponding autosequence of the second kind. (End)

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= n-> add((-1)^(k+1) *k! *stirling2(n+1, k+1)*fibonacci(k), k=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 17 2013
  • Mathematica
    CoefficientList[Series[E^x*(1-E^x)/(1-3*E^x+E^(2*x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Aug 13 2013 *)
    t[0, k_] := Fibonacci[k]; t[n_, k_] := t[n, k] = (k+1)*(t[n-1, k] - t[n-1, k+1]); a[n_] := t[n, 0] // Abs; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Oct 22 2013, after Paul Curtz *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, fibonacci(m)*m!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 20 2011 */

Formula

O.g.f.: Sum_{n>=1} Fibonacci(n) * n! * x^n / Product_{k=1..n} (1+k*x). - Paul D. Hanna, Jul 20 2011
A100872(n)=a(2*n) and A100868(n)=a(2*n-1).
From Paul Barry, Apr 20 2005: (Start)
E.g.f.: exp(x)*(1-exp(x))/(1-3*exp(x)+exp((2*x))).
a(n) = Sum_{k=0..n} (-1)^(n-k)*S2(n, k)*k!*Fibonacci(k). [corrected by Ilya Gutkovskiy, Apr 04 2019] (End)
a(n) ~ c * n! / (log((3+sqrt(5))/2))^(n+1), where c = 1/sqrt(5) if n is even and c = 1 if n is odd. - Vaclav Kotesovec, Aug 13 2013
a(n) = -1 * Sum_{k = 0..n} A163626(n,k)*A000045(k). - Philippe Deléham, May 29 2015

A100868 a(n) = Sum_{k>0} k^(2n-1)/phi^(2k) where phi = (1+sqrt(5))/2 = A001622.

Original entry on oeis.org

1, 7, 151, 6847, 532231, 63206287, 10645162711, 2413453999327, 708721089607591, 261679010699505967, 118654880542567722871, 64819182599591545006207, 41987713702382161714004551, 31821948327041297758906340047, 27896532358791207565357448388631
Offset: 1

Views

Author

Benoit Cloitre, Jan 08 2005

Keywords

Comments

A bisection of "Stirling-Bernoulli transform" of Fibonacci numbers.

Crossrefs

Row sums of A303675.

Programs

  • Mathematica
    FullSimplify[Table[PolyLog[1 - 2k, GoldenRatio^(-2)], {k, 1, 10}]] (* Vladimir Reshetnikov, Feb 16 2011 *)
  • PARI
    a(n)=round(sum(k=1,500,k^(2*n-1)/((1+sqrt(5))/2)^(2*k)))

Formula

a(n) = A050946(2*n-1).
Showing 1-4 of 4 results.