A100872
a(n) = (1/sqrt(5)) * Sum_{k>0} k^(2n)/phi^(2k) where phi = (1+sqrt(5))/2 = A001622.
Original entry on oeis.org
1, 13, 421, 25453, 2473141, 352444093, 69251478661, 17943523153933, 5927841361456981, 2431910546406522973, 1212989379862721528101, 722875495525684291639213, 507275965883448333971692021, 414031618935013558427928710653, 388884101194230308462039862028741
Offset: 1
-
FullSimplify[Table[PolyLog[-2k, GoldenRatio^(-2)]/Sqrt[5], {k, 1, 10}]] (* Vladimir Reshetnikov, Feb 16 2011 *)
T[n_, k_] /; 1 <= k <= n := T[n, k] = k(2k-1) T[n-1, k-1] + k^2 T[n-1, k]; T[, 1] = 1; T[, ] = 0; a[n] := Sum[2^(k-1) T[n, k], {k, 1, n}]; Array[a, 15] (* Jean-François Alcover, Jul 03 2019 *)
-
a(n)=round(1/sqrt(5)*sum(k=1,500,k^(2*n)/((1+sqrt(5))/2)^(2*k)))
A100868
a(n) = Sum_{k>0} k^(2n-1)/phi^(2k) where phi = (1+sqrt(5))/2 = A001622.
Original entry on oeis.org
1, 7, 151, 6847, 532231, 63206287, 10645162711, 2413453999327, 708721089607591, 261679010699505967, 118654880542567722871, 64819182599591545006207, 41987713702382161714004551, 31821948327041297758906340047, 27896532358791207565357448388631
Offset: 1
-
FullSimplify[Table[PolyLog[1 - 2k, GoldenRatio^(-2)], {k, 1, 10}]] (* Vladimir Reshetnikov, Feb 16 2011 *)
-
a(n)=round(sum(k=1,500,k^(2*n-1)/((1+sqrt(5))/2)^(2*k)))
Original entry on oeis.org
2, 1, -1, -2, 1, 6, -3, -34, 17, 310, -155, -4146, 2073, 76454, -38227, -1859138, 929569, 57641238, -28820619, -2219305810, 1109652905, 103886563462, -51943281731, -5810302084962, 2905151042481, 382659344967926
Offset: 0
a(0) = 0 - 2 * (-1) = 2,
a(1) = -1 - 2 * (-1) = 1,
a(2) = -1 - 2 * 0 = -1,
a(3) = 0 - 2 * 1 = -2,
a(4) = 1 - 2 * 0 = 1,
a(5) = 0 - 2 * (-3) = 6.
A105796
"Stirling-Bernoulli transform" of Jacobsthal numbers.
Original entry on oeis.org
0, 1, 1, 13, 25, 541, 1561, 47293, 181945, 7087261, 34082521, 1622632573, 9363855865, 526858348381, 3547114323481, 230283190977853, 1771884893993785, 130370767029135901, 1128511554418948441, 92801587319328411133, 892562598748128067705, 81124824998504073881821
Offset: 0
-
a:= n-> -add((-1)^k*k!*Stirling2(n+1, k+1)*(<<0|1>, <2|1>>^k)[1, 2], k=0..n):
seq(a(n), n=0..23); # Alois P. Heinz, May 09 2018
-
CoefficientList[Series[E^x*(1-E^x)/((2-E^x)*(1-2*E^x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 26 2013 *)
A105797
"Stirling-Bernoulli transform" of Pell numbers.
Original entry on oeis.org
0, 1, 3, 19, 135, 1291, 14343, 188539, 2815095, 47412811, 886239783, 18231365659, 409053408855, 9943622273131, 260300948527623, 7300927107288379, 218426614502831415, 6943261704033434251, 233692323131307301863
Offset: 0
-
CoefficientList[Series[E^x*(1-E^x)/(1-4*E^x+2*E^(2*x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 26 2013 *)
A307361
Expansion of e.g.f. (sinh(x) + 5*cosh(x) - 5)/(3 - 2*cosh(x)).
Original entry on oeis.org
0, 1, 5, 7, 65, 151, 2105, 6847, 127265, 532231, 12365705, 63206287, 1762220465, 10645162711, 346257393305, 2413453999327, 89717615769665, 708721089607591, 29639206807284905, 261679010699505967, 12159552732032614865, 118654880542567722871, 6064946899313607640505
Offset: 0
-
a:=series((sinh(x)+5*cosh(x)-5)/(3-2*cosh(x)),x=0,23):seq(n!*coeff(a, x, n), n=0..22); # Paolo P. Lava, Apr 12 2019
-
nmax = 22; CoefficientList[Series[(Sinh[x] + 5 Cosh[x] - 5)/(3 - 2 Cosh[x]), {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Sum[j! LucasL[j] x^j/Product[(1 + k x), {k, 1, j}], {j, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[(-1)^(n - k) StirlingS2[n, k] k! LucasL[k], {k, 1, n}], {n, 0, 22}]
-
my(x = 'x + O('x^30)); concat(0, Vec(serlaplace((sinh(x) + 5*cosh(x) - 5)/(3 - 2*cosh(x))))) \\ Michel Marcus, Apr 05 2019
Showing 1-6 of 6 results.
Comments