cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100949 Number of partitions of n into a prime and a semiprime.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 3, 2, 2, 1, 2, 2, 5, 1, 2, 2, 3, 2, 4, 2, 3, 3, 5, 5, 4, 1, 2, 4, 5, 2, 4, 3, 5, 6, 4, 5, 6, 3, 4, 5, 6, 5, 4, 3, 4, 4, 8, 7, 6, 4, 3, 7, 8, 6, 4, 4, 3, 10, 7, 6, 7, 4, 6, 10, 7, 6, 5, 6, 4, 7, 8, 9, 7, 5, 6, 9, 8, 9, 4, 5, 7, 8, 9, 11, 8, 4, 4, 11, 12, 10, 6, 10, 7, 13, 9, 9, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2004

Keywords

Comments

Marnell conjectures that a(n) > 0 for n > 10 after analyzing "many thousands of whole numbers". I find no exceptions below 100 million. - Charles R Greathouse IV, May 04 2010

Examples

			a(21) = #{7+2*7, 11+2*5, 17+2*2} = 3.
		

References

  • Geoffrey R. Marnell, "Ten Prime Conjectures", Journal of Recreational Mathematics 33:3 (2004-2005), pp. 193-196.

Crossrefs

Programs

  • Haskell
    a100949 n = sum $ map (a010051 . (n -)) $ takeWhile (< n) a001358_list
    -- Reinhard Zumkeller, Jun 26 2013
  • Mathematica
    Table[Count[Sort/@(PrimeOmega/@IntegerPartitions[n,{2}]),{1,2}],{n,110}] (* Harvey P. Dale, Mar 25 2018 *)
  • PARI
    list(lim)=my(p=primes(primepi(lim)),sp=select(n->bigomega(n)==2, vector(lim\1,i,i)),x=O('x^(lim\1+1))+'x); concat([0,0,0,0,0], Vec(sum(i=1,#p,x^p[i])*sum(i=1,#sp,x^sp[i]))) \\ Charles R Greathouse IV, Jun 14 2013
    

Formula

A100951(n) <= A100950(n) <= a(n) <= min(A000720(n), A072000(n)).
a(n) = Sum_{i=1..floor(n/2)} A010051(i) * A064911(n-i) + A010051(n-i) * A064911(i). - Wesley Ivan Hurt, May 02 2019