cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100960 Triangle read by rows: T(n,k) is the number of labeled 2-connected planar graphs with n nodes and k edges, n >= 3, n <= k <= 3(n-2).

Original entry on oeis.org

1, 3, 6, 1, 12, 70, 100, 45, 10, 60, 720, 2445, 3525, 2637, 1125, 195, 360, 7560, 46830, 132951, 210861, 205905, 123795, 40950, 5712, 2520, 84000, 835800, 3915240, 10549168, 18092368, 20545920, 15337560, 7193760, 1922760, 223440, 20160, 997920, 14757120, 103692960, 423918432, 1119730032, 2014030656, 2516883516, 2181661020, 1285377660, 491282820, 109907280, 10929600
Offset: 3

Views

Author

N. J. A. Sloane, Jan 12 2005

Keywords

Examples

			The triangle T(n,k), n>=3, k>=3 begins:
  n\k [3] [4] [5] [6] [7]  [8]   [9]   [10]  [11]  [12]
  [3] 1;
  [4] 0,  3,  6,  1;
  [5] 0,  0,  12, 70, 100, 45,   10;
  [6] 0,  0,  0,  60, 720, 2445, 3525, 2637, 1125, 195;
  [7] ...
		

Crossrefs

Row sums give A096331. Main diagonal is A001710.

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    A100960_ser(N) = {
    my(x='x+O('x^(3*N+1)), t='t+O('t^(N+4)),
       q=t*x*Ser(vector(3*N+1, n, Polrev(vector(min(N+3, 2*n\3), k, Q(n,k)),'t))),
       d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
       g2=intformal(t^2/2*((1+d)/(1+x)-1)));
       serlaplace(Ser(vector(N, n, subst(polcoeff(g2, n,'t),'x,'t)))*'x);
    };
    A100960_seq(N) = {
      my(v=Vec(A100960_ser(N+2))); vector(#v, n, Vecrev(v[n]/t^(n+2)));
    };
    concat(A100960_seq(7)) \\ Gheorghe Coserea, Aug 09 2017

Extensions

More terms from Michel Marcus, Feb 10 2016