A099542
Rhonda numbers to base 10.
Original entry on oeis.org
1568, 2835, 4752, 5265, 5439, 5664, 5824, 5832, 8526, 12985, 15625, 15698, 19435, 25284, 25662, 33475, 34935, 35581, 45951, 47265, 47594, 52374, 53176, 53742, 54479, 55272, 56356, 56718, 95232, 118465, 133857, 148653, 154462, 161785
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Oct 21 2004
1568 has prime factorization 2^5 * 7^2. Sum of prime factors = 2*5 + 7*2 = 24. Product of digits of 1568 = 1*5*6*8 = 240 = 10*24, hence 1568 is a Rhonda number to base 10.
Cf. Rhonda numbers to other bases:
A100968 (base 4),
A100969 (base 6),
A100970 (base 8),
A100973 (base 9),
A100971 (base 12),
A100972 (base 14),
A100974 (base 15),
A100975 (base 16),
A255735 (base 18),
A255732 (base 20),
A255736 (base 30),
A255731 (base 60), see also
A255880.
-
import Data.List (unfoldr); import Data.Tuple (swap)
a099542 n = a099542_list !! (n-1)
a099542_list = filter (rhonda 10) [1..]
rhonda b x = a001414 x * b == product (unfoldr
(\z -> if z == 0 then Nothing else Just $ swap $ divMod z b) x)
-- Reinhard Zumkeller, Mar 05 2015, Dec 01 2012
-
Select[Range[200000],10Total[Times@@@FactorInteger[#]]==Times@@ IntegerDigits[ #]&] (* Harvey P. Dale, Oct 16 2011 *)
A100968
Integers that are Rhonda numbers to base 4.
Original entry on oeis.org
10206, 11935, 12150, 16031, 45030, 94185, 113022, 114415, 191149, 244713, 259753, 374782, 392121, 503773, 649902, 703326, 716250, 764526, 883630, 884446, 912766, 980694, 980837, 1005502, 1420250, 1474239, 1567335, 1685159, 1702822, 1824634, 1944190, 1948279
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 24 2004
10206 is a Rhonda number to base 4 because the product of its base 4 digits is 2*1*3*3*1*3*2=108, the sum of the prime factors of 10206 is 2+6*3+7=27 and 27*4=108.
From _Reinhard Zumkeller_, Mar 05 2015: (Start)
a(18) = 764526 = 2*4^9 + 3*4^8 + 2*4^7 + 2*4^6 + 2*4^5 + 2*4^4 + 1*4^3 + 2*4^2 + 3*4^1 + 2*4^0 = 2*3*7*109*167
with 2*3*2*2*2*2*1*2*3*2 = 4 * (2+3+7+109+167) = 1152;
a(21) = 912766 = 3*4^9 + 1*4^8 + 3*4^7 + 2*4^6 + 3*4^5 + 1*4^4 + 1*4^3 + 3*4^2 + 3*4^1 + 2*4^0 = 2*53*79*109
with 3*1*3*2*3*1*1*3*3*2 = 4 * (2+53+79+109) = 972. (End)
Rhonda numbers to other bases:
A100969 (base 6),
A100970 (base 8),
A100973 (base 9),
A099542 (base 10),
A100971 (base 12),
A100972 (base 14),
A100974 (base 15),
A100975 (base 16),
A255735 (base 18),
A255732 (base 20),
A255736 (base 30),
A255731 (base 60), see also
A255872.
-
a100968 n = a100968_list !! (n-1)
a100968_list = filter (rhonda 4) a023705_list
-- Function rhonda as in A099542.
-- Reinhard Zumkeller, Mar 08 2015
-
A100968Q[k_] := Times @@ IntegerDigits[k, 4] == 4*Total[Times @@@ FactorInteger[k]];
Select[Range[2000000], A100968Q] (* Paolo Xausa, Jul 01 2025 *)
A291925
A(n,k) is the n-th Rhonda number to base A002808(k), the k-th composite number; square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
10206, 855, 11935, 1836, 1029, 12150, 15540, 6318, 3813, 16031, 1568, 21054, 6622, 5577, 45030, 560, 2835, 25331, 10530, 7040, 94185, 11475, 800, 4752, 44360, 14500, 7304, 113022, 2392, 18655, 3993, 5265, 44660, 14739, 15104, 114415, 1000, 2472, 20565, 4425, 5439, 44733, 17655, 19136, 191149
Offset: 1
A(1,2) = 855 is the first and smallest term of column k=2. The second composite number is A002808(2) = 6. 855 = (((3*6)+5)*6+4)*6+3 = 3543_6 = 3*3*5*19. And (3*5*4*3)/6 = A001414(855) = 3+3+5+19 = 30.
Square array A(n,k) begins:
: 10206, 855, 1836, 15540, 1568, 560, 11475, ...
: 11935, 1029, 6318, 21054, 2835, 800, 18655, ...
: 12150, 3813, 6622, 25331, 4752, 3993, 20565, ...
: 16031, 5577, 10530, 44360, 5265, 4425, 29631, ...
: 45030, 7040, 14500, 44660, 5439, 4602, 31725, ...
: 94185, 7304, 14739, 44733, 5664, 4888, 45387, ...
: 113022, 15104, 17655, 47652, 5824, 7315, 58404, ...
Columns k=1-11,19,42 give:
A100968,
A100969,
A100970,
A100973,
A099542,
A100971,
A100972,
A100974,
A100975,
A255735,
A255732,
A255736,
A255731.
A100969
Integers that are Rhonda numbers to base 6.
Original entry on oeis.org
855, 1029, 3813, 5577, 7040, 7304, 15104, 19136, 35350, 36992, 41031, 42009, 60368, 65536, 67821, 76880, 84525, 90601, 122831, 131175, 154570, 162565, 184009, 184585, 196504, 217021, 219830, 222200, 252161, 256041, 268677, 353115, 355737, 357568, 367517, 371229, 388367
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 24 2004
The product of the base 6 digits of 507500 is 1*4*5*1*3*3*1*2=360 and the sum of the prime factors of 507500 is 2*2+4*5+7+29=60 and 360=6*60.
Cf. Rhonda numbers to other bases:
A100968 (base 4),
A100970 (base 8),
A100973 (base 9),
A099542 (base 10),
A100971 (base 12),
A100972 (base 14),
A100974 (base 15),
A100975 (base 16),
A255735 (base 18),
A255732 (base 20),
A255736 (base 30),
A255731 (base 60), see also
A255872.
-
a100969 n = a100969_list !! (n-1)
a100969_list = filter (rhonda 6) a248910_list
-- Function rhonda as in A099542.
-- Reinhard Zumkeller, Mar 08 2015
-
A100969Q[k_] := Times @@ IntegerDigits[k, 6] == 6*Total[Times @@@ FactorInteger[k]];
Select[Range[400000], A100969Q] (* Paolo Xausa, Jul 01 2025 *)
A100970
Integers that are Rhonda numbers to base 8.
Original entry on oeis.org
1836, 6318, 6622, 10530, 14500, 14739, 17655, 18550, 25398, 25956, 30562, 39215, 39325, 50875, 51429, 52887, 55611, 56420, 58548, 59731, 60604, 72358, 74620, 76581, 78780, 81370, 84180, 85949, 103350, 103788, 108750, 112914, 118233
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 24 2004
Product of base 8 digits of 1836 is 3*4*5*4=240 and sum of prime factors of 1826 is 2*2+3*3+17=30 and 240=8*30.
Cf. Rhonda numbers to other bases:
A100968 (base 4),
A100969 (base 6),
A100973 (base 9),
A099542 (base 10),
A100971 (base 12),
A100972 (base 14),
A100974 (base 15),
A100975 (base 16),
A255735 (base 18),
A255732 (base 20),
A255736 (base 30),
A255731 (base 60), see also
A255872.
-
a100970 n = a100970_list !! (n-1)
a100970_list = filter (rhonda 8) a255805_list
-- Function rhonda as in A099542.
-- Reinhard Zumkeller, Mar 08 2015
-
rhda8Q[n_]:=Times@@IntegerDigits[n,8]==8*Total[Times@@@FactorInteger[n]]; Select[Range[120000],rhda8Q] (* Harvey P. Dale, Jul 10 2021 *)
A100973
Integers that are Rhonda numbers to base 9.
Original entry on oeis.org
15540, 21054, 25331, 44360, 44660, 44733, 47652, 50560, 54944, 76857, 77142, 83334, 83694, 96448, 97944, 106575, 108273, 117624, 125952, 138966, 141204, 144236, 153318, 158417, 159424, 188529, 188598, 189350, 192000, 192126, 196652, 202350, 203320, 205390, 246675, 247632
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 25 2004
The product of the base 9 digits of 15540 is 2*3*2*7*6=504, the sum of the prime factors of 15540 is 2*2+3+5+7+37=56 and 504=9*56. So 15540 is a Rhonda number to base 9.
Cf. Rhonda numbers to other bases:
A100968 (base 4),
A100969 (base 6),
A100970 (base 8),
A099542 (base 10),
A100971 (base 12),
A100972 (base 14),
A100974 (base 15),
A100975 (base 16),
A255735 (base 18),
A255732 (base 20),
A255736 (base 30),
A255731 (base 60), see also
A255872.
-
a100973 n = a100973_list !! (n-1)
a100973_list = filter (rhonda 9) a255808_list
-- Function rhonda as in A099542.
-- Reinhard Zumkeller, Mar 08 2015
-
A100973Q[k_] := Times @@ IntegerDigits[k, 9] == 9*Total[Times @@@ FactorInteger[k]];
Select[Range[250000], A100973Q] (* Paolo Xausa, Jul 01 2025 *)
A100975
Integers that are Rhonda numbers to base 16.
Original entry on oeis.org
1000, 1134, 6776, 15912, 19624, 20043, 20355, 23946, 26296, 29070, 31906, 32292, 34236, 34521, 36465, 39066, 50055, 50986, 52341, 54340, 58088, 59541, 75867, 85870, 87150, 88182, 93058, 95944, 99674, 101460, 109650, 109810, 119480, 124500
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 25 2004
The product of the base 16 digits of 1000 is 3*14*8=336. The sum of the prime factors of 1000 is 3*2+3*5=21. 336=16*21 and so 1000 is a Rhonda number to base 16.
Cf. Rhonda numbers to other bases:
A100968 (base 4),
A100969 (base 6),
A100970 (base 8),
A100973 (base 9),
A099542 (base 10),
A100971 (base 12),
A100972 (base 14),
A100974 (base 15),
A255735 (base 18),
A255732 (base 20),
A255736 (base 30),
A255731 (base 60).
-
a100975 n = a100975_list !! (n-1)
a100975_list = filter (rhonda 16) $ iterate z 1 where
z x = 1 + if r < 15 then x else 16 * z x' where (x', r) = divMod x 16
-- Function rhonda as in A099542.
-- Reinhard Zumkeller, Mar 07 2015
A100971
Integers that are Rhonda numbers to base 12.
Original entry on oeis.org
560, 800, 3993, 4425, 4602, 4888, 7315, 8296, 9315, 11849, 12028, 13034, 14828, 15052, 16264, 18511, 18906, 25619, 25875, 27176, 32742, 37264, 37523, 46035, 50765, 52338, 58261, 58504, 59166, 62002, 66176, 66752, 66928, 67195, 68502
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 25 2004
The product of the base 12 digits of 560 is 3*10*8=240; the sum of the prime factors of 560 is 4*2+5+7=20; and 240=12*20 so 560 is a Rhonda number to base 12.
Cf. Rhonda numbers to other bases:
A100968 (base 4),
A100969 (base 6),
A100970 (base 8),
A100973 (base 9),
A099542 (base 10),
A100972 (base 14),
A100974 (base 15),
A100975 (base 16),
A255735 (base 18),
A255732 (base 20),
A255736 (base 30),
A255731 (base 60).
-
a100971 n = a100971_list !! (n-1)
a100971_list = filter (rhonda 12) $ iterate z 1 where
z x = 1 + if r < 11 then x else 12 * z x' where (x', r) = divMod x 12
-- Function rhonda as in A099542.
-- Reinhard Zumkeller, Mar 07 2015
A100974
Integers that are Rhonda numbers to base 15.
Original entry on oeis.org
2392, 2472, 11468, 15873, 17424, 18126, 19152, 20079, 24388, 30758, 31150, 33004, 33550, 37925, 39483, 42550, 44714, 58870, 59605, 66950, 70182, 71485, 71709, 85557, 85848, 86241, 86591, 92150, 110334, 112671, 113300, 116270, 120414
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 25 2004
The product of the base 15 digits of 2392 is 10*9*7=630. The sum of the prime factors of 2392 is 3*2+13+23=42 and 630=15*42. So 2392 is a Rhonda number to base 15.
Cf. Rhonda numbers to other bases:
A100968 (base 4),
A100969 (base 6),
A100970 (base 8),
A100973 (base 9),
A099542 (base 10),
A100971 (base 12),
A100972 (base 14),
A100975 (base 16),
A255735 (base 18),
A255732 (base 20),
A255736 (base 30),
A255731 (base 60).
-
a100974 n = a100974_list !! (n-1)
a100974_list = filter (rhonda 15) $ iterate z 1 where
z x = 1 + if r < 14 then x else 15 * z x' where (x', r) = divMod x 15
-- Function rhonda as in A099542.
-- Reinhard Zumkeller, Mar 07 2015
A255732
Rhonda numbers in vigesimal number system.
Original entry on oeis.org
1815, 11050, 15295, 21165, 22165, 30702, 34510, 34645, 42292, 44165, 52059, 53416, 65945, 78430, 80712, 84251, 84835, 86591, 112608, 146055, 148144, 156284, 175419, 178350, 194590, 200655, 201825, 202664, 204085, 209095, 209550, 211250, 212346, 212850
Offset: 1
a(1) = 1815 = 4*20^2 + 10*20^1 + 15*20^0 = 3*5*11*11,
with 4 * 10 * 15 = 20 * (3+5+11+11) = 600;
a(10) = 44165 = 5*20^3 + 10*20^2 + 8*20^1 + 5*20^0 = 5*11*11*73,
with 5 * 10 * 8 * 5 = 20 * (5+11+11+73) = 2000.
Cf. Rhonda numbers to other bases:
A100968 (base 4),
A100969 (base 6),
A100970 (base 8),
A100973 (base 9),
A099542 (base 10),
A100971 (base 12),
A100972 (base 14),
A100974 (base 15),
A100975 (base 16),
A255735 (base 18),
A255736 (base 30),
A255731 (base 60), see also
A255872.
Showing 1-10 of 15 results.
Comments