A101036 Riesel numbers n (n*2^k-1 is composite for all k>0, n odd) that have a covering set.
509203, 762701, 777149, 790841, 992077, 1106681, 1247173, 1254341, 1330207, 1330319, 1715053, 1730653, 1730681, 1744117, 1830187, 1976473, 2136283, 2251349, 2313487, 2344211, 2554843, 2924861, 3079469, 3177553, 3292241, 3419789, 3423373, 3580901
Offset: 1
Keywords
References
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 238.
Links
- Pierre CAMI and Arkadiusz Wesolowski, Table of n, a(n) for n = 1..15000 (P. CAMI supplied the first 335 terms)
- Michael Filaseta, Carrie Finch and Mark Kozek, On powers associated with Sierpiński numbers, Riesel numbers and Polignac's conjecture, Journal of Number Theory, Volume 128, Issue 7 (July 2008), pp. 1916-1940.
- Michael Filaseta, Jacob Juillerat, and Thomas Luckner, Consecutive primes which are widely digitally delicate and Brier numbers, arXiv:2209.10646 [math.NT], 2022.
- Carrie E. Finch-Smith and R. Scottfield Groth, Arbitrarily Long Sequences of Sierpiński Numbers that are the Sum of a Sierpiński Number and a Mersenne Number, Journal of Integer Sequences, Vol. 28 (2025), Article 25.2.4. See p. 22.
- Marcos J. González, Alberto Mendoza, Florian Luca, and V. Janitzio Mejía Huguet, On Composite Odd Numbers k for Which 2^n * k is a Noncototient for All Positive Integers n, J. Int. Seq., Vol. 24 (2021), Article 21.9.6.
- Hans Riesel, Some large prime numbers. Translated from the Swedish original (Några stora primtal, Elementa 39 (1956), pp. 258-260) by Lars Blomberg.
- Wikipedia, Riesel number.
Crossrefs
Extensions
Up to 3292241, checked by Don Reble, Jan 17 2005, who comments that up to this point each n*2^k-1 has a prime factor <= 241.
New name from Felix Fröhlich, Sep 09 2019
Comments