cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101098 a(1)=1; thereafter, a(n+1) = 20*n^3 + 10*n.

Original entry on oeis.org

1, 30, 180, 570, 1320, 2550, 4380, 6930, 10320, 14670, 20100, 26730, 34680, 44070, 55020, 67650, 82080, 98430, 116820, 137370, 160200, 185430, 213180, 243570, 276720, 312750, 351780, 393930, 439320, 488070, 540300, 596130, 655680, 719070, 786420, 857850
Offset: 1

Views

Author

Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004

Keywords

Comments

Shells (nexus numbers) of shells of the fifth powers (A000584).

Programs

  • GAP
    Concatenation([1],List([1..35],n->20*n^3+10*n)); # Muniru A Asiru, Dec 02 2018
  • Magma
    [n le 1 select 1 else 10*(n - 1)*(2*(n - 1)^2 + 1): n in [1..50]]; // G. C. Greubel, Dec 01 2018
    
  • Maple
    a:=`if`(n=1,1,20*n^3+10*n): 1,seq(a(n),n=1..35); # Muniru A Asiru, Dec 02 2018
  • Mathematica
    Table[If[n == 1, 1, 10*(n - 1)*(2*(n - 1)^2 + 1)], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)(* modified by G. C. Greubel, Dec 01 2018 *)
  • PARI
    my(x='x+O('x^50)); Vec(x + 30*x^2*(1+x)^2/(1-x)^4) \\ G. C. Greubel, Dec 01 2018
    
  • Sage
    s=(x + 30*x^2*(1+x)^2/(1-x)^4).series(x, 50); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 01 2018
    

Formula

From R. J. Mathar, Sep 02 2008: (Start)
a(n) = A068236(n-2), n > 1.
G.f.: x + 30*x^2*(1+x)^2/(1-x)^4. (End)

Extensions

Edited by Ralf Stephan, Dec 16 2004