A101099 Third partial sums of fifth powers (A000584).
1, 35, 345, 1955, 7990, 26226, 73470, 182490, 412335, 863005, 1695551, 3158805, 5624060, 9629140, 15933420, 25585476, 40005165, 61082055, 91292245, 133835735, 192796626, 273328550, 381867850, 526377150, 716622075, 964484001, 1284311835
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube. [Dead link]
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube. [Cached copy, May 15 2013]
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
Cf. A000584.
Programs
-
Magma
[n*(1+n)*(2+n)*(3+n)*(-1+n*(2+n))*(2+n*(4+n))/336: n in [1..30]]; // G. C. Greubel, Dec 01 2018
-
Mathematica
Nest[Accumulate[#]&,Range[30]^5,3] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,35,345,1955,7990,26226,73470,182490,412335},30] (* Harvey P. Dale, Feb 20 2015 *)
-
PARI
vector(30, n, n*(1+n)*(2+n)*(3+n)*(-1+n*(2+n))*(2+n*(4+n))/336) \\ G. C. Greubel, Dec 01 2018
-
Sage
[n*(1+n)*(2+n)*(3+n)*(-1+n*(2+n))*(2+n*(4+n))/336 for n in (1..30)] # G. C. Greubel, Dec 01 2018
Formula
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(-1 + n*(2 + n))*(2 + n*(4 + n))/336.
G.f.: x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/(1-x)^9. - Colin Barker, Apr 16 2012
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). - Harvey P. Dale, Feb 20 2015
E.g.f.: x*(336 + 5544*x + 13608*x^2 + 10934*x^3 + 3696*x^4 + 574*x^5 + 40*x^6 + x^7)*exp(x)/336. - G. C. Greubel, Dec 01 2018
Sum_{n>=1} 1/a(n) = 224/3 - 60*sqrt(2)*Pi*cot(sqrt(2)*Pi). - Amiram Eldar, Jan 27 2022
Extensions
Edited by Ralf Stephan, Dec 16 2004