A101092 Second partial sums of fifth powers (A000584).
1, 34, 310, 1610, 6035, 18236, 47244, 109020, 229845, 450670, 832546, 1463254, 2465255, 4005080, 6304280, 9652056, 14419689, 21076890, 30210190, 42543490, 58960891, 80531924, 108539300, 144509300, 190244925, 247861926, 319827834, 409004110, 518691535
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Recurrence relation for the second partial sums of m-th powers
- Luciano Ancora, Second partial sums of the m-th powers
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- C. P. Neuman and D. I. Schonbach, Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698). See Table 1. - _N. J. A. Sloane_, Mar 23 2014 (But beware of a typo)
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Dead link]
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Cached copy, May 15 2013]
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Programs
-
Magma
[(n*(1+n)*(2+n)*(-1+n*(2+n))*(1+2*n*(2+n)))/84: n in [1..40]]; // Vincenzo Librandi, Mar 24 2014
-
Maple
f:=n->(2*n^7-7*n^5+7*n^3-2*n)/84; [seq(f(n),n=0..50)]; # N. J. A. Sloane, Mar 23 2014
-
Mathematica
CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *) Nest[Accumulate,Range[30]^5,2] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,34,310,1610,6035,18236,47244,109020},30] (* Harvey P. Dale, Aug 22 2022 *)
-
PARI
a(n)=n*(n+1)*(n+2)*(n*(n+2)-1)*(2*n*(2 + n)+1)/84 \\ Charles R Greathouse IV, Apr 21 2015
-
Python
def A101092(n): return n*(n*(n*(n*(n*(n*(n+7<<1)+35)+35)+7)-7)-2)//84 # Chai Wah Wu, Oct 03 2024
-
Sage
[n*(1+n)*(2+n)*(n*(2+n)-1)*(1+2*n*(2+n))/84 for n in range(1,30)] # Danny Rorabaugh, Apr 21 2015
Formula
a(n) = (n*(1 + n)*(2 + n)*(-1 + n*(2 + n))*(1 + 2*n*(2 + n)))/84.
G.f.: x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/(1-x)^8. - Colin Barker, Apr 16 2012
a(n) = Sum_{i=1..n} i*(n+1-i)^5, by the definition. - Bruno Berselli, Jan 31 2014
a(n) = 2*a(n-1) - a(n-2) + n^5. - Luciano Ancora, Jan 08 2015
E.g.f.: exp(x)*x*(84 + 1344*x + 2954*x^2 + 1995*x^3 + 525*x^4 + 56*x^5 + 2*x^6)/84. - Stefano Spezia, May 04 2024
Extensions
Edited by Ralf Stephan, Dec 16 2004
Comments