cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A254469 Sixth partial sums of cubes (A000578).

Original entry on oeis.org

1, 14, 96, 450, 1650, 5082, 13728, 33462, 75075, 157300, 311168, 586092, 1058148, 1841100, 3100800, 5073684, 8090181, 12603954, 19228000, 28778750, 42329430, 61274070, 87403680, 122996250, 170922375, 234768456, 318979584, 429024376, 571584200, 754769400
Offset: 1

Views

Author

Luciano Ancora, Feb 15 2015

Keywords

Examples

			First differences:   1,  7, 19,  37,   61,   91, ... (A003215)
-------------------------------------------------------------------------
The cubes:           1,  8, 27,  64,  125,  216, ... (A000578)
-------------------------------------------------------------------------
First partial sums:  1,  9, 36, 100,  225,  441, ... (A000537)
Second partial sums: 1, 10, 46, 146,  371,  812, ... (A024166)
Third partial sums:  1, 11, 57, 203,  574, 1386, ... (A101094)
Fourth partial sums: 1, 12, 69, 272,  846, 2232, ... (A101097)
Fifth partial sums:  1, 13, 82, 354, 1200, 3432, ... (A101102)
Sixth partial sums:  1, 14, 96, 450, 1650, 5082, ... (this sequence)
		

Crossrefs

Programs

  • Magma
    [n*(1+n)^2*(2+n)*(3+n)*(4+n)*(5+n)^2*(6+n)/60480: n in [1..30]]; // Vincenzo Librandi, Feb 15 2015
    
  • Mathematica
    Table[n (1 + n)^2 (2 + n) (3 + n) (4 + n) (5 + n)^2 (6 + n)/60480, {n, 27}] (* or *) CoefficientList[Series[(1 + 4 x + x^2)/(- 1 + x)^10, {x, 0, 26}], x]
    Nest[Accumulate,Range[30]^3,6] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,14,96,450,1650,5082,13728,33462,75075,157300},30] (* Harvey P. Dale, Sep 03 2016 *)
  • PARI
    a(n)=n*(1+n)^2*(2+n)*(3+n)*(4+n)*(5+n)^2*(6+n)/60480 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (x + 4*x^2 + x^3)/(- 1 + x)^10.
a(n) = n*(1 + n)^2*(2 + n)*(3 + n)*(4 + n)*(5 + n)^2*(6 + n)/60480.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + n^3.
From Amiram Eldar, Jan 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 217/200.
Sum_{n>=1} (-1)^(n+1)/a(n) = 223769/200 - 8064*log(2)/5. (End)

A101095 Fourth difference of fifth powers (A000584).

Original entry on oeis.org

1, 28, 121, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1

Views

Author

Cecilia Rossiter, Dec 15 2004

Keywords

Comments

Original Name: Shells (nexus numbers) of shells of shells of shells of the power of 5.
The (Worpitzky/Euler/Pascal Cube) "MagicNKZ" algorithm is: MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n, with k>=0, n>=1, z>=0. MagicNKZ is used to generate the n-th accumulation sequence of the z-th row of the Euler Triangle (A008292). For example, MagicNKZ(3,k,0) is the 3rd row of the Euler Triangle (followed by zeros) and MagicNKZ(10,k,1) is the partial sums of the 10th row of the Euler Triangle. This sequence is MagicNKZ(5,k-1,2).

Crossrefs

Fourth differences of A000584, third differences of A022521, second differences of A101098, and first differences of A101096.
For other sequences based upon MagicNKZ(n,k,z):
...... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8
--------------------------------------------------------------------------------------
z = 0 | A000007 | A019590 | ....... MagicNKZ(n,k,0) = T(n,k+1) from A008292 .......
z = 1 | A000012 | A040000 | A101101 | A101104 | A101100 | ....... | ....... | .......
z = 2 | A000027 | A005408 | A008458 | A101103 | thisSeq | ....... | ....... | .......
z = 3 | A000217 | A000290 | A003215 | A005914 | A101096 | ....... | ....... | .......
z = 4 | A000292 | A000330 | A000578 | A005917 | A101098 | ....... | ....... | .......
z = 5 | A000332 | A002415 | A000537 | A000583 | A022521 | ....... | A255181 | .......
z = 12 | A001288 | A057788 | ....... | A254870 | A254471 | A254683 | A254646 | A254642
z = 13 | A010965 | ....... | ....... | ....... | A254871 | A254472 | A254684 | A254647
z = 14 | A010966 | ....... | ....... | ....... | ....... | A254872 | ....... | .......
--------------------------------------------------------------------------------------
Cf. A047969.

Programs

  • Magma
    I:=[1,28,121,240,360]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, May 07 2015
    
  • Mathematica
    MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 2, 2}, {k, 0, 34}]
    CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
    Join[{1,28,121,240},Differences[Range[50]^5,4]] (* or *) LinearRecurrence[{2,-1},{1,28,121,240,360},50] (* Harvey P. Dale, Jun 11 2016 *)
  • PARI
    a(n)=if(n>3, 120*n-240, 33*n^2-72*n+40) \\ Charles R Greathouse IV, Oct 11 2015
  • Sage
    [1,28,121]+[120*(k-2) for k in range(4,36)] # Danny Rorabaugh, Apr 23 2015
    

Formula

a(k+1) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n; n = 5, z = 2.
For k>3, a(k) = Sum_{j=0..4} (-1)^j*binomial(4, j)*(k - j)^5 = 120*(k - 2).
a(n) = 2*a(n-1) - a(n-2), n>5. G.f.: x*(1+26*x+66*x^2+26*x^3+x^4) / (1-x)^2. - Colin Barker, Mar 01 2012

Extensions

MagicNKZ material edited, Crossrefs table added, SeriesAtLevelR material removed by Danny Rorabaugh, Apr 23 2015
Name changed and keyword 'uned' removed by Danny Rorabaugh, May 06 2015

A254470 Sixth partial sums of fourth powers (A000583).

Original entry on oeis.org

1, 22, 198, 1134, 4884, 17226, 52338, 141570, 348777, 795652, 1701700, 3444948, 6651216, 12321804, 22011804, 38073948, 63985977, 104782986, 167620090, 262495090, 403165620, 608300550, 902911230, 1320114510, 1903286385, 2708672616, 3808530792, 5294887048
Offset: 1

Views

Author

Luciano Ancora, Feb 15 2015

Keywords

Examples

			First differences:   1, 15,  65, 175,  369,   671, ... (A005917)
-------------------------------------------------------------------------
The fourth powers:   1, 16,  81, 256,  625,  1296, ... (A000583)
-------------------------------------------------------------------------
First partial sums:  1, 17,  98, 354,  979,  2275, ... (A000538)
Second partial sums: 1, 18, 116, 470, 1449,  3724, ... (A101089)
Third partial sums:  1, 19, 135, 605, 2054,  5778, ... (A101090)
Fourth partial sums: 1, 20, 155, 760, 2814,  8592, ... (A101091)
Fifth partial sums:  1, 21, 176, 936, 3750, 12342, ... (A254681)
Sixth partial sums:  1, 22, 198,1134, 4884, 17226, ... (this sequence)
		

Crossrefs

Programs

  • Magma
    [n*(1+n)*(2+n)*(3+n)^2*(4+n)*(5+n)*(6+n)*(1+12*n+ 2*n^2)/302400: n in [1..30]]; // Vincenzo Librandi, Feb 15 2015
    
  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n)^2 (4 + n) (5 + n) (6 + n) (1 + 12 n + 2 n^2)/302400,{n, 25}] (* or *) CoefficientList[Series[(- 1 - 11 x - 11 x^2 - x^3)/(- 1 + x)^11, {x, 0, 24}], x]
    Nest[Accumulate,Range[30]^4,6] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,22,198,1134,4884,17226,52338,141570,348777,795652,1701700},30] (* Harvey P. Dale, Apr 23 2016 *)
  • PARI
    vector(50,n,n*(1 + n)*(2 + n)*(3 + n)^2*(4 + n)*(5 + n)*(6 + n)*(1 + 12*n + 2*n^2)/302400) \\ Derek Orr, Feb 19 2015

Formula

G.f.: (-x - 11*x^2 - 11*x^3 - x^4)/(- 1 + x)^11.
a(n) = n*(1 + n)*(2 + n)*(3 + n)^2*(4 + n)*(5 + n)*(6 + n)*(1 + 12*n + 2*n^2)/302400.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + n^4.
Sum_{n>=1} 1/a(n) = 3320303/2601 + 1400*Pi^2/17 + (8960/17)*sqrt(2/17)*Pi*cot(sqrt(17/2)*Pi). - Amiram Eldar, Jan 26 2022

A254472 Sixth partial sums of sixth powers (A001014).

Original entry on oeis.org

1, 70, 1134, 9870, 59220, 275562, 1063530, 3552978, 10577385, 28652260, 71725108, 167911380, 371057232, 779831820, 1568210220, 3032733564, 5663906745, 10251608346, 18037546450, 30931714450, 51814612980, 84952851750, 136562787270, 215565263550, 334584493425
Offset: 1

Views

Author

Luciano Ancora, Feb 15 2015

Keywords

Examples

			First differences:   1, 63,  665, 3367, 11529, ... (A022522)
--------------------------------------------------------------------------
The sixth powers:    1, 64,  729, 4096, 15625, ... (A001014)
--------------------------------------------------------------------------
First partial sums:  1, 65,  794, 4890, 20515, ... (A000540)
Second partial sums: 1, 66,  860, 5750, 26265, ... (A101093)
Third partial sums:  1, 67,  927, 6677, 32942, ... (A254640)
Fourth partial sums: 1, 68,  995, 7672, 40614, ... (A254645)
Fifth partial sums:  1, 69, 1064, 8736, 49350, ... (A254683)
Sixth partial sums:  1, 70, 1134, 9870, 59220, ... (this sequence)
		

Crossrefs

Programs

  • Magma
    [n*(1+n)*(2+n)*(3+n)^2*(4+n)*(5+n)*(6+n)*(-3+5*n+n^2)* (3+7*n+n^2)/665280: n in [1..30]]; // Vincenzo Librandi, Feb 15 2015
    
  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n)^2 (4 + n) (5 + n) (6 + n) (- 3 + 5 n + n^2) (3 + 7 n + n^2)/665280, {n, 22}] (* or *) CoefficientList[Series[(- 1 - 57 x - 302 x^2 - 302 x^3 - 57 x^4 - x^5)/(- 1 + x)^13, {x, 0, 28}], x]
    Nest[Accumulate,Range[30]^6,6] (* Harvey P. Dale, Oct 02 2015 *)
  • PARI
    vector(50,n,n*(1 + n)*(2 + n)*(3 + n)^2*(4 + n)*(5 + n)*(6 + n)*(-3 + 5*n + n^2)*(3 + 7*n + n^2)/665280) \\ Derek Orr, Feb 19 2015

Formula

G.f.: (-x - 57*x^2 - 302*x^3 - 302*x^4 - 57*x^5 - x^6)/(- 1 + x)^13.
a(n) = n*(1 + n)*(2 + n)*(3 + n)^2*(4 + n)*(5 + n)*(6 + n)*(-3 + 5*n + n^2)*(3 + 7*n + n^2)/665280.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + n^6.
Sum_{n>=1} 1/a(n) = 25622179/76545 - 3080*Pi^2/81 + 149600*Pi*tan(sqrt(37)*Pi/2)/(243*sqrt(37)). - Amiram Eldar, Jan 27 2022

A254871 Seventh partial sums of fifth powers (A000584).

Original entry on oeis.org

1, 39, 495, 3705, 19995, 85917, 311493, 989235, 2823990, 7383610, 17931498, 40889862, 88304970, 181852230, 359140470, 683363994, 1257722271, 2246496825, 3905261425, 6623425575, 10983195405, 17840105595, 28431558675, 44521334325, 68589834300, 104081944356
Offset: 1

Views

Author

Luciano Ancora, Feb 17 2015

Keywords

Examples

			Second differences:      30, 180,  570,  1320,  2550, ...   (A068236)
First differences:    1, 31, 211,  781,  2101,  4651, ...   (A022521)
------------------------------------------------------------------------
The fifth powers:     1, 32, 243, 1024,  3125,  7776, ...   (A000584)
------------------------------------------------------------------------
First partial sums:   1, 33, 276, 1300,  4425, 12201, ...   (A000539)
Second partial sums:  1, 34, 310, 1610,  6035, 18236, ...   (A101092)
Third partial sums:   1, 35, 345, 1955,  7990, 26226, ...   (A101099)
Fourth partial sums:  1, 36, 381, 2336, 10326, 36552, ...   (A254644)
Fifth partial sums:   1, 37, 418, 2754, 13080, 49632, ...   (A254682)
Sixth partial sums:   1, 38, 456, 3210, 16290, 65922, ...   (A254471)
Seventh partial sums: 1, 39, 495, 3705, 19995, 85917, ... (this sequence)
		

Crossrefs

Programs

  • Magma
    [n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)*(7+n)*(-21+49*n +56*n^2+14*n^3+n^4)/3991680: n in [1..30]]; // Vincenzo Librandi, Feb 19 2015
  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (6 + n) (7 + n) ((-21 + 49 n + 56 n^2 + 14 n^3 + n^4)/3991680), {n, 23}] (* or *)
    CoefficientList[Series[(- 1 - 26 x - 66 x^2 - 26 x^3 - x^4)/(- 1 + x)^13, {x, 0, 22}], x]
  • PARI
    vector(50, n, n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(-21 + 49*n + 56*n^2 + 14*n^3 + n^4)/3991680) \\ Derek Orr, Feb 19 2015
    

Formula

G.f.: (- x - 26*x^2 - 66*x^3 - 26*x^4 - x^5)/(- 1 + x)^13.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(-21 + 49*n + 56*n^2 + 14*n^3 + n^4)/3991680.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) + n^5.
Showing 1-5 of 5 results.