cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101102 Fifth partial sums of cubes (A000578).

Original entry on oeis.org

1, 13, 82, 354, 1200, 3432, 8646, 19734, 41613, 82225, 153868, 274924, 472056, 782952, 1259700, 1972884, 3016497, 4513773, 6624046, 9550750, 13550680, 18944640, 26129610, 35592570, 47926125, 63846081, 84211128, 110044792, 142559824, 183185200, 233595912
Offset: 1

Views

Author

Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004

Keywords

Crossrefs

Partial sums of A101097.

Programs

  • Magma
    [Binomial(n+5,6)*(3*n^2+15*n+10)/28: n in [1..30]]; // G. C. Greubel, Dec 01 2018
    
  • Mathematica
    Table[Binomial[n+5,6]*(3*n^2+15*n+10)/28, {n,1,30}] (* G. C. Greubel, Dec 01 2018 *)
    Nest[Accumulate,Range[40]^3,5] (* Harvey P. Dale, Feb 06 2023 *)
  • PARI
    a(n)=sum(t=1,n,sum(s=1,t,sum(l=1,s,sum(j=1,l, sum(m=1, j, sum(i=m*(m+1)/2-m+1, m*(m+1)/2,(2*i-1))))))) \\ Alexander R. Povolotsky, May 17 2008
    
  • PARI
    Vec(-x*(x^2+4*x+1)/(x-1)^9 + O(x^100)) \\ Colin Barker, Apr 23 2015
    
  • PARI
    a(n) = binomial(n+5,6)*(3*n^2+15*n+10)/28 \\ Charles R Greathouse IV, Apr 23 2015
    
  • Sage
    [binomial(n+5,6)*(3*n^2+15*n+10)/28 for n in  (1..30)] # G. C. Greubel, Dec 01 2018

Formula

a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(10 + 3*n*(n+5))/20160.
This sequence could be obtained from the general formula a(n) = n*(n+1)*(n+2)*(n+3)*...*(n+k)*(n*(n+k) + (k-1)*k/6)/((k+3)!/6) at k=5. - Alexander R. Povolotsky, May 17 2008
G.f.: x*(x^2+4*x+1) / (1-x)^9. - Colin Barker, Apr 23 2015
Sum_{n>=1} 1/a(n) = -162*sqrt(21/5)*Pi*tan(sqrt(35/3)*Pi/2) - 136269/100. - Amiram Eldar, Jan 26 2022

Extensions

Edited by Ralf Stephan, Dec 16 2004