cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101127 McKay-Thompson series of class 12D for the Monster group.

Original entry on oeis.org

1, 8, 28, 64, 134, 288, 568, 1024, 1809, 3152, 5316, 8704, 13990, 22208, 34696, 53248, 80724, 121240, 180068, 264448, 384940, 556064, 796760, 1132544, 1598789, 2243056, 3127360, 4333568, 5971922, 8188096, 11170160, 15163392, 20491033
Offset: 0

Views

Author

Michael Somos, Dec 02 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			T12D = 1/q + 8*q^2 + 28*q^5 + 64*q^8 + 134*q^11 + 288*q^14 + 568*q^17 + ...
		

References

  • D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k+1))^8, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2]^8, {x, 0, n}]; (* Michael Somos, Sep 12 2017 *)
  • PARI
    {a(n) = my(A); if(n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A)))^8, n))};
    
  • PARI
    {a(n) = my(A); if(n<0, 0, A = x * O(x^n); polcoeff( prod(k=1, (n+1)\2, 1 + x^(2*k-1), 1 + A)^8, n))};

Formula

Expansion of q^(1/3) * (eta(q^2)^2 / (eta(q) * eta(q^4)))^8 in powers of q.
Euler transform of period 4 sequence [8, -8, 8, 0, ...].
Given g.f. A(x), B(q) = A(q^3) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u*v*(u^3+v^3) -(u*v)^3 + 15*(u*v)^2 - 32*u*v + 16.
G.f.: (Product_{k>0} (1 + x^(2*k-1)))^8.
A007259(n) = (-1)^n * a(n). Convolution square of A112160.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
Expansion of chi(x)^8 in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Sep 12 2017
G.f.: exp(8*Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 07 2018