cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A341247 Expansion of (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^8.

Original entry on oeis.org

1, 0, 8, 8, 36, 64, 148, 296, 562, 1080, 1920, 3440, 5890, 9992, 16532, 26920, 43175, 68144, 106260, 163472, 248824, 374504, 558212, 824208, 1206409, 1751360, 2522692, 3607456, 5122848, 7227392, 10132948, 14123000, 19573393, 26981768, 37003700, 50499952, 68595956
Offset: 8

Views

Author

Ilya Gutkovskiy, Feb 07 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, g(n)),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
        end:
    a:= n-> b(n, 8):
    seq(a(n), n=8..44);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    nmax = 44; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^8, {x, 0, nmax}], x] // Drop[#, 8] &

Formula

G.f.: (-1 + Product_{k>=1} (1 + x^(2*k - 1)))^8.

A014705 Expansion of ((theta_2)^4 + (theta_3)^4) / eta(z/2)^4.

Original entry on oeis.org

1, 28, 134, 568, 1809, 5316, 13990, 34696, 80724, 180068, 384940, 796760, 1598789, 3127360, 5971922, 11170160, 20491033, 36947444, 65553412, 114619248, 197681341, 336670120, 566630192, 943234040, 1553941445, 2535325644, 4098671374, 6568931200, 10441889389
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 28*x + 134*x^2 + 568*x^3 + 1809*x^4 + 5316*x^5 + 13990*x^6 + ...
G.f. = 1/q + 28*q^5 + 134*q^11 + 568*q^17 + 1809*q^23 + 5316*q^29 + ...
		

Crossrefs

Cf. A101127.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x, x^2]^8 + QPochhammer[ -x, x^2]^8 ) / 2, {x, 0, 2 n}]; (* Michael Somos, Sep 30 2013 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^4 + EllipticTheta[ 2, 0, q]^4) / QPochhammer[ q]^4, {q, 0, n}]; (* Michael Somos, Sep 30 2013 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, 1 + x^(2*k-1), 1 + x * O(x^(2*n)))^8, 2*n))}; /* Michael Somos, Sep 30 2013 */

Formula

Expansion of (phi(x)^4 + 16 * x* psi(x^2)^4) / f(-x)^4 in powers of x where phi(), psi(), f() are Ramanujan theta functions. - Michael Somos, Sep 30 2013
Expansion of (phi(x)^4 + phi(-x)^4) / (2 * f(-x^2)^4) = (chi(x)^8 + chi(-x)^8) / 2 in powers of x^2 where phi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Sep 30 2013
a(n) = A101127(2*n). - Michael Somos, Sep 30 2013
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(7/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 19 2018
Showing 1-2 of 2 results.