A101156 a(n) = 2*Fibonacci(n) + 8*Fibonacci(n-5).
10, 24, 34, 58, 92, 150, 242, 392, 634, 1026, 1660, 2686, 4346, 7032, 11378, 18410, 29788, 48198, 77986, 126184, 204170, 330354, 534524, 864878, 1399402, 2264280, 3663682, 5927962, 9591644, 15519606, 25111250, 40630856, 65742106, 106372962, 172115068
Offset: 5
Links
- Colin Barker, Table of n, a(n) for n = 5..1000
- H. Zhao and X. Li, On the Fibonacci numbers of trees, Fib. Quart., 44 (2006), 32-38.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Magma
[2*Fibonacci(n)+8*Fibonacci(n-5): n in [5..40]]; // Vincenzo Librandi, Jan 24 2017
-
Maple
with(combinat): A101156:=n->2*fibonacci(n)+8*fibonacci(n-5): seq(A101156(n), n=5..50); # Wesley Ivan Hurt, Jan 23 2017
-
Mathematica
Table[2Fibonacci[n]+8Fibonacci[n-5],{n,5,40}] (* Harvey P. Dale, Jul 15 2013 *) LinearRecurrence[{1, 1}, {10, 24}, 35] (* Vincenzo Librandi, Jan 24 2017 *)
-
PARI
Vec(-2*x^5*(7*x+5)/(x^2+x-1) + O(x^50)) \\ Colin Barker, Mar 07 2016
Formula
From Colin Barker, Jul 30 2013: (Start)
a(n) = a(n-1) + a(n-2).
G.f.: -2*x^5*(7*x+5) / (x^2+x-1). (End)