cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101230 Number of partitions of 2n in which both odd parts and parts that are multiples of 3 occur with even multiplicities. There is no restriction on the other even parts.

Original entry on oeis.org

1, 2, 4, 7, 12, 20, 32, 50, 76, 113, 166, 240, 343, 484, 676, 935, 1282, 1744, 2355, 3158, 4208, 5573, 7340, 9616, 12536, 16266, 21012, 27028, 34628, 44196, 56204, 71226, 89964, 113270, 142180, 177948, 222089, 276430, 343172, 424959, 524966
Offset: 0

Views

Author

Noureddine Chair, Dec 16 2004

Keywords

Comments

Note that if a partition of n has odd parts occur with even multiplicities then n must be even. This is the reason for only looking at partitions of 2n. - Michael Somos, Mar 04 2012

Examples

			a(8)=12 because 8 = 4+4 = 4+2+2 = 4+2+1+1 = 4+1+1+1+1 = 3+3+2 = 3+3+1+1 = 2+2+2+2 = 2+2+2+1+1 = 2+2+1+1+1+1 = 2+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1.
1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 20*x^5 + 32*x^6 + 50*x^7 + 76*x^8 + 113*x^9 + ...
1/q + 2*q^7 + 4*q^15 + 7*q^23 + 12*q^31 + 20*q^39 + 32*q^47 + 50*q^55 + 76*q^63 + ...
		

Crossrefs

Programs

  • Maple
    series(product((1+x^k)/((1-x^k)*(1+x^(3*k))),k=1..100),x=0,100);
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(3*k-1))*(1+x^(3*k-2)) / (1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 01 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) / (eta(x + A)^2 * eta(x^6 + A)), n))} /* Michael Somos, Mar 04 2012 */

Formula

G.f.: product_{k>0}(1+x^k)/((1-x^k)(1+x^(3k)))= Theta_4(0, x^3)/theta(0, x)1/product_{k>0}(1-x^(3k)).
Euler transform of period 6 sequence [2, 1, 1, 1, 2, 1, ...]. - Vladeta Jovovic, Dec 17 2004
Expansion of q^(1/8) * eta(q^2) * eta(q^3) / (eta(q)^2 * eta(q^6)) in powers of q. - Michael Somos, Mar 04 2012
Convolution inverse of A089812. - Michael Somos, Mar 04 2012
Convolution product of A000041 and A003105. - Michael Somos, Mar 04 2012
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (6*n). - Vaclav Kotesovec, Sep 01 2015