A101263 Decimal expansion of sqrt(2 - sqrt(3)), edge length of a regular dodecagon with circumradius 1.
5, 1, 7, 6, 3, 8, 0, 9, 0, 2, 0, 5, 0, 4, 1, 5, 2, 4, 6, 9, 7, 7, 9, 7, 6, 7, 5, 2, 4, 8, 0, 9, 6, 6, 5, 6, 6, 9, 8, 1, 3, 7, 8, 0, 2, 6, 3, 9, 8, 6, 1, 0, 2, 7, 6, 2, 8, 0, 0, 6, 4, 1, 4, 6, 3, 0, 1, 1, 3, 9, 4, 9, 4, 9, 7, 6, 0, 3, 9, 9, 3, 8, 4, 4, 7, 3, 5, 9, 4, 9, 3, 8, 8, 4, 9, 9, 3, 3
Offset: 0
Examples
0.517638090205041524697797675248096656698137802639861027628006414630113....
References
- Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved Problems in Geometry, Springer, 1991, Section D1, p. 108.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- J. Schaer and A. Meir, On a geometric extremum problem, Canadian Mathematical Bulletin, Vol. 8, No. 1 (1965), pp. 21-27.
- J. Schaer, The densest packing of 9 circles in a square, Canadian Mathematical Bulletin, Vol. 8, No. 3 (1965), pp. 273-277.
- Eric Weisstein's World of Mathematics, Dodecagon.
- Index entries for algebraic numbers, degree 4.
Programs
-
Mathematica
r = 6^(1/2); t = (r - (-4 + r^2)^(1/2))/2; FullSimplify[t] N[t, 130] RealDigits[N[t, 130]][[1]] (*A101263*) RealDigits[Sqrt[2-Sqrt[3]],10,120][[1]] (* Harvey P. Dale, Apr 24 2018 *)
-
PARI
2*sin(Pi/12) \\ Stanislav Sykora, May 02 2016
Formula
Equals sqrt(A019913). - R. J. Mathar, Apr 20 2009
Equals 2*sin(Pi/12) = 2*cos(Pi*5/12). - Stanislav Sykora, May 02 2016
Equals i^(5/6) + i^(-5/6). - Gary W. Adamson, Jul 07 2022
From Amiram Eldar, Nov 24 2024: (Start)
Equals (sqrt(3)-1)/sqrt(2).
Equals Product_{k>=1} (1 + (-1)^k/A091999(k)). (End)
Comments