cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101263 Decimal expansion of sqrt(2 - sqrt(3)), edge length of a regular dodecagon with circumradius 1.

Original entry on oeis.org

5, 1, 7, 6, 3, 8, 0, 9, 0, 2, 0, 5, 0, 4, 1, 5, 2, 4, 6, 9, 7, 7, 9, 7, 6, 7, 5, 2, 4, 8, 0, 9, 6, 6, 5, 6, 6, 9, 8, 1, 3, 7, 8, 0, 2, 6, 3, 9, 8, 6, 1, 0, 2, 7, 6, 2, 8, 0, 0, 6, 4, 1, 4, 6, 3, 0, 1, 1, 3, 9, 4, 9, 4, 9, 7, 6, 0, 3, 9, 9, 3, 8, 4, 4, 7, 3, 5, 9, 4, 9, 3, 8, 8, 4, 9, 9, 3, 3
Offset: 0

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jan 25 2005

Keywords

Comments

sqrt(2 - sqrt(3)) is the shape of the lesser sqrt(6)-contraction rectangle, as defined at A188739. - Clark Kimberling, Apr 16 2011
This is a constructible number, since 12-gon is a constructible polygon. See A003401 for more details. - Stanislav Sykora, May 02 2016
It is also smaller positive coordinate of (symmetrical) intersection points of x^2 + y^2 = 4 circle and y = 1/x hyperbola. The bigger coordinate is A188887. - Leszek Lezniak, Sep 18 2018
The greatest possible minimum distance between 8 points in a unit square (Schaer and Meir, 1965; Schaer, 1965; Croft et al., 1991). - Amiram Eldar, Feb 24 2025

Examples

			0.517638090205041524697797675248096656698137802639861027628006414630113....
		

References

  • Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved Problems in Geometry, Springer, 1991, Section D1, p. 108.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.

Crossrefs

Programs

  • Mathematica
    r = 6^(1/2); t = (r - (-4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]  (*A101263*)
    RealDigits[Sqrt[2-Sqrt[3]],10,120][[1]] (* Harvey P. Dale, Apr 24 2018 *)
  • PARI
    2*sin(Pi/12) \\ Stanislav Sykora, May 02 2016

Formula

Equals sqrt(A019913). - R. J. Mathar, Apr 20 2009
Equals 2*sin(Pi/12) = 2*cos(Pi*5/12). - Stanislav Sykora, May 02 2016
Equals i^(5/6) + i^(-5/6). - Gary W. Adamson, Jul 07 2022
From Amiram Eldar, Nov 24 2024: (Start)
Equals A120683 / 2 = 2 * A019824 = 1 / A188887 = exp(-A329247).
Equals (sqrt(3)-1)/sqrt(2).
Equals Product_{k>=1} (1 + (-1)^k/A091999(k)). (End)