cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A003401 Numbers of edges of regular polygons constructible with ruler (or, more precisely, an unmarked straightedge) and compass.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, 272, 320, 340, 384, 408, 480, 510, 512, 514, 544, 640, 680, 768, 771, 816, 960, 1020, 1024, 1028, 1088, 1280, 1285
Offset: 1

Views

Author

Keywords

Comments

The terms 1 and 2 correspond to degenerate polygons.
These are also the numbers for which phi(n) is a power of 2: A209229(A000010(a(n))) = 1. - Olivier Gérard Feb 15 1999
From Stanislav Sykora, May 02 2016: (Start)
The sequence can be also defined as follows: (i) 1 is a member. (ii) Double of any member is also a member. (iii) If a member is not divisible by a Fermat prime F_k then its product with F_k is also a member. In particular, the powers of 2 (A000079) are a subset and so are the Fermat primes (A019434), which are the only odd prime members.
The definition is too restrictive (though correct): The Georg Mohr - Lorenzo Mascheroni theorem shows that constructibility using a straightedge and a compass is equivalent to using compass only. Moreover, Jean Victor Poncelet has shown that it is also equivalent to using straightedge and a fixed ('rusty') compass. With the work of Jakob Steiner, this became part of the Poncelet-Steiner theorem establishing the equivalence to using straightedge and a fixed circle (with a known center). A further extension by Francesco Severi replaced the availability of a circle with that of a fixed arc, no matter how small (but still with a known center).
Constructibility implies that when m is a member of this sequence, the edge length 2*sin(Pi/m) of an m-gon with circumradius 1 can be written as a finite expression involving only integer numbers, the four basic arithmetic operations, and the square root. (End)
If x,y are terms, and gcd(x,y) is a power of 2 then x*y is also a term. - David James Sycamore, Aug 24 2024

Examples

			34 is a term of this sequence because a circle can be divided into exactly 34 parts. 7 is not.
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 183.
  • Allan Clark, Elements of Abstract Algebra, Chapter 4, Galois Theory, Dover Publications, NY 1984, page 124.
  • Duane W. DeTemple, "Carlyle circles and the Lemoine simplicity of polygon constructions." The American Mathematical Monthly 98.2 (1991): 97-108. - N. J. A. Sloane, Aug 05 2021
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • B. L. van der Waerden, Modern Algebra. Unger, NY, 2nd ed., Vols. 1-2, 1953, Vol. 1, p. 187.

Crossrefs

Subsequence of A295298. - Antti Karttunen, Nov 27 2017
A004729 and A051916 are subsequences. - Reinhard Zumkeller, Mar 20 2010
Cf. A000079, A004169, A000215, A099884, A019434 (Fermat primes).
Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A272535 (16), A228787 (17), A272536 (20).
Positions of zeros in A293516 (apart from two initial -1's), and in A336469, positions of ones in A295660 and in A336477 (characteristic function).
Cf. also A046528.

Programs

  • Haskell
    a003401 n = a003401_list !! (n-1)
    a003401_list = map (+ 1) $ elemIndices 1 $ map a209229 a000010_list
    -- Reinhard Zumkeller, Jul 31 2012
    
  • Mathematica
    Select[ Range[ 1300 ], IntegerQ[ Log[ 2, EulerPhi[ # ] ] ]& ] (* Olivier Gérard Feb 15 1999 *)
    (* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) Take[ Union[ Flatten[ NestList[2# &, Times @@@ Table[ UnrankSubset[n, Join[{1}, Table[2^2^i + 1, {i, 0, 4}]]], {n, 63}], 11]]], 60] (* Robert G. Wilson v, Jun 11 2005 *)
    nn=10; logs=Log[2,{2,3,5,17,257,65537}]; lim2=Floor[nn/logs[[1]]]; Sort[Reap[Do[z={i,j,k,l,m,n}.logs; If[z<=nn, Sow[2^z]], {i,0,lim2}, {j,0,1}, {k,0,1}, {l,0,1}, {m,0,1}, {n,0,1}]][[2,1]]]
    A092506 = {2, 3, 5, 17, 257, 65537}; s = Sort[Times @@@ Subsets@ A092506]; mx = 1300; Union@ Flatten@ Table[(2^n)*s[[i]], {i, 64}, {n, 0, Log2[mx/s[[i]]]}] (* Robert G. Wilson v, Jul 28 2014 *)
  • PARI
    for(n=1,10^4,my(t=eulerphi(n));if(t/2^valuation(t,2)==1,print1(n,", "))); \\ Joerg Arndt, Jul 29 2014
    
  • PARI
    is(n)=n>>=valuation(n,2); if(n<7, return(n>0)); my(k=logint(logint(n,2),2)); if(k>32, my(p=2^2^k+1); if(n%p, return(0)); n/=p; unknown=1; if(n%p==0, return(0)); p=0; if(is(n)==0, 0, "unknown [has large Fermat number in factorization]"), 4294967295%n==0) \\ Charles R Greathouse IV, Jan 09 2022
    
  • PARI
    is(n)=n>>=valuation(n,2); 4294967295%n==0 \\ valid for n <= 2^2^33, conjecturally valid for all n; Charles R Greathouse IV, Jan 09 2022
    
  • Python
    from sympy import totient
    A003401_list = [n for n in range(1,10**4) if format(totient(n),'b').count('1') == 1]
    # Chai Wah Wu, Jan 12 2015

Formula

Terms from 3 onward are computable as numbers such that cototient-of-totient equals the totient-of-totient: Flatten[Position[Table[co[eu[n]]-eu[eu[n]], {n, 1, 10000}], 0]] eu[m]=EulerPhi[m], co[m]=m-eu[m]. - Labos Elemer, Oct 19 2001, clarified by Antti Karttunen, Nov 27 2017
Any product of 2^k and distinct Fermat primes (primes of the form 2^(2^m)+1). - Sergio Pimentel, Apr 30 2004, edited by Franklin T. Adams-Watters, Jun 16 2006
If the well-known conjecture that there are only five prime Fermat numbers F_k=2^{2^k}+1, k=0,1,2,3,4 is true, then we have exactly: Sum_{n>=1} 1/a(n)= 2*Product_{k=0..4} (1+1/F_k) = 4869735552/1431655765 = 3.40147098978.... - Vladimir Shevelev and T. D. Noe, Dec 01 2010
log a(n) >> sqrt(n); if there are finitely many Fermat primes, then log a(n) ~ k log n for some k. - Charles R Greathouse IV, Oct 23 2015

Extensions

Definition clarified by Bill Gosper. - N. J. A. Sloane, Jun 14 2020

A091999 Numbers that are congruent to {2, 10} mod 12.

Original entry on oeis.org

2, 10, 14, 22, 26, 34, 38, 46, 50, 58, 62, 70, 74, 82, 86, 94, 98, 106, 110, 118, 122, 130, 134, 142, 146, 154, 158, 166, 170, 178, 182, 190, 194, 202, 206, 214, 218, 226, 230, 238, 242, 250, 254, 262, 266, 274, 278, 286, 290, 298, 302, 310, 314, 322, 326, 334
Offset: 1

Views

Author

Ray Chandler, Feb 21 2004

Keywords

Comments

Numbers divisible by 2 but not by 3 or 4. - Robert Israel, Apr 24 2015
For n > 1, a(n) is representable as a sum of four but no fewer consecutive nonnegative integers, i.e., 10 = 1 + 2 + 3 + 4, 14 = 2 + 3 + 4 + 5, 22 = 4 + 5 + 6 + 7, etc. (see A138591). - Martin Renner, Mar 14 2016
Essentially the same as A063221. - Omar E. Pol, Aug 16 2023

Crossrefs

Second row of A092260.
Cf. A109761 (subsequence).

Programs

  • Haskell
    a091999 n = a091999_list !! (n-1)
    a091999_list = 2 : 10 : map (+ 12) a091999_list
    -- Reinhard Zumkeller, Jan 21 2013
    
  • Magma
    [6*n-3+(-1)^n : n in [1..100]]; // Wesley Ivan Hurt, Apr 23 2015
    
  • Maple
    A091999:=n->6*n-3+(-1)^n: seq(A091999(n), n=1..100); # Wesley Ivan Hurt, Apr 23 2015
  • Mathematica
    Flatten[#+{2,10}&/@(12*Range[0,30])] (* or *) LinearRecurrence[{1,1,-1},{2,10,14},60] (* Harvey P. Dale, Jun 24 2013 *)
  • PARI
    a(n) = 6*n - 3 + (-1)^n \\ David Lovler, Jul 16 2022

Formula

a(n) = 2*A007310(n).
a(n) = A186424(n) - A186424(n-2), for n > 1.
a(n) = 12*(n-1) - a(n-1), with a(1)=2. - Vincenzo Librandi, Nov 16 2010
G.f.: 2*x*(1+4*x+x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = a(n-1) + a(n-2) - a(n-3); a(1)=2, a(2)=10, a(3)=14. - Harvey P. Dale, Jun 24 2013
a(n) = 6*n - 3 + (-1)^n. - Wesley Ivan Hurt, Apr 23 2015
E.g.f.: 2 + (6*x - 2)*cosh(x) + 2*(3*x - 2)*sinh(x). - Stefano Spezia, May 09 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)). - Amiram Eldar, Dec 13 2021
E.g.f.: 2 + (6*x - 3)*exp(x) + exp(-x). - David Lovler, Aug 08 2022
a(n) = A063221(n), n > 1. - Omar E. Pol, Aug 15 2023
From Amiram Eldar, Nov 24 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(2) (A002193).
Product_{n>=1} (1 + (-1)^n/a(n)) = 2*sin(Pi/12) (A101263). (End)

A019824 Decimal expansion of sine of 15 degrees.

Original entry on oeis.org

2, 5, 8, 8, 1, 9, 0, 4, 5, 1, 0, 2, 5, 2, 0, 7, 6, 2, 3, 4, 8, 8, 9, 8, 8, 3, 7, 6, 2, 4, 0, 4, 8, 3, 2, 8, 3, 4, 9, 0, 6, 8, 9, 0, 1, 3, 1, 9, 9, 3, 0, 5, 1, 3, 8, 1, 4, 0, 0, 3, 2, 0, 7, 3, 1, 5, 0, 5, 6, 9, 7, 4, 7, 4, 8, 8, 0, 1, 9, 9, 6, 9, 2, 2, 3, 6, 7, 9, 7, 4, 6, 9, 4, 2, 4, 9, 6, 6, 5
Offset: 0

Views

Author

Keywords

Comments

Also the imaginary part of i^(1/6). - Stanislav Sykora, Apr 25 2012

Examples

			0.258819045102520762348898837624048328349068901319930513814003207315...
		

Crossrefs

Programs

Formula

Equals (sqrt(3)-1)/(2*sqrt(2)) = (A002194 -1) * A020765 = sin(Pi/12). - R. J. Mathar, Jun 18 2006
Equals 2F1(9/8,-1/8;1/2;3/4) / 2 = - 2F1(11/8,-3/8;1/2;3/4) / 2 = cos(5*Pi/12). - R. J. Mathar, Oct 27 2008
Equals sqrt(2 - sqrt(3))/2 = (1/2) * A101263. - Amiram Eldar, Aug 05 2020
This^2 + A019884^2=1. - R. J. Mathar, Aug 31 2025
Smallest positive of the 4 real-valued roots of 16*x^4-16*x^2+1=0. - R. J. Mathar, Aug 31 2025

A188887 Decimal expansion of sqrt(2 + sqrt(3)).

Original entry on oeis.org

1, 9, 3, 1, 8, 5, 1, 6, 5, 2, 5, 7, 8, 1, 3, 6, 5, 7, 3, 4, 9, 9, 4, 8, 6, 3, 9, 9, 4, 5, 7, 7, 9, 4, 7, 3, 5, 2, 6, 7, 8, 0, 9, 6, 7, 8, 0, 1, 6, 8, 0, 9, 1, 0, 0, 8, 0, 4, 6, 8, 6, 1, 5, 2, 6, 2, 0, 8, 4, 6, 4, 2, 7, 9, 5, 9, 7, 1, 1, 0, 3, 2, 6, 9, 5, 1, 2, 3, 4, 8, 3, 7, 1, 6, 1, 4, 0, 9, 0, 3, 7, 7, 6, 8, 0, 4, 2, 2, 3, 7, 2, 8, 7, 6, 3, 2, 4, 3, 0, 7, 4, 8, 9, 1, 8, 5, 0, 7, 5, 7
Offset: 1

Views

Author

Clark Kimberling, Apr 12 2011

Keywords

Comments

Decimal expansion of the length/width ratio of a sqrt(2)-extension rectangle. See A188640 for definitions of shape and r-extension rectangle.
A sqrt(2)-extension rectangle matches the continued fraction [1,1,13,1,2,15,10,1,18,1,1,21,,...] (A188888) for the shape L/W = sqrt(2 + sqrt(3)). This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,1,...]. Specifically, for the sqrt(2)-extension rectangle, 1 square is removed first, then 1 square, then 13 squares, then 1 square, ..., so that the original rectangle of shape sqrt(2 + sqrt(3)) is partitioned into an infinite collection of squares.
sqrt(2 + sqrt(3)) is also the shape of the greater sqrt(6)-contraction rectangle; see A188738.
This constant is also the length of the Steiner span of three vertices of a unit square. - Jean-François Alcover, May 22 2014
It is also the larger positive coordinate of (symmetrical) intersection points created by x^2 + y^2 = 4 circle and y = 1/x hyperbola. The smaller coordinate is A101263. - Leszek Lezniak, Sep 18 2018
Length of the shortest diagonal in a regular 12-gon with unit side. - Mohammed Yaseen, Nov 12 2020

Examples

			1.931851652578136573499486399457794735267809678016809...
		

Crossrefs

Programs

  • Magma
    Sqrt(2 + Sqrt(3)); // G. C. Greubel, Apr 10 2018
  • Mathematica
    r = 2^(1/2); t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]
    RealDigits[Sqrt[2 + Sqrt[3]], 10, 100][[1]] (* G. C. Greubel, Apr 10 2018 *)
  • PARI
    sqrt(2 + sqrt(3)) \\ G. C. Greubel, Apr 10 2018
    

Formula

Equals (sqrt(6) + sqrt(2))/2.
Equals exp(asinh(cos(Pi/4))). - Geoffrey Caveney, Apr 23 2014
Equals cos(Pi/4) + sqrt(1 + cos(Pi/4)^2). - Geoffrey Caveney, Apr 23 2014
Equals i^(1/6) + i^(-1/6). - Gary W. Adamson, Jul 07 2022
Equals the largest root of x - 1/x = sqrt(2) and of x^2 + 1/x^2 = 4. - Gary W. Adamson, Jun 12 2023
Equals Product_{k>=0} ((12*k + 2)*(12*k + 10))/((12*k + 1)*(12*k + 11)). - Antonio Graciá Llorente, Feb 24 2024
From Amiram Eldar, Nov 23 2024: (Start)
Equals A214726 / 2 = 2 * A019884 = 1 / A101263 = exp(A329247) = A217870^2 = sqrt(A019973).
Equals Product_{k>=1} (1 - (-1)^k/A091998(k)). (End)

A120683 Decimal expansion of secant of 15 degrees (cosecant of 75 degrees).

Original entry on oeis.org

1, 0, 3, 5, 2, 7, 6, 1, 8, 0, 4, 1, 0, 0, 8, 3, 0, 4, 9, 3, 9, 5, 5, 9, 5, 3, 5, 0, 4, 9, 6, 1, 9, 3, 3, 1, 3, 3, 9, 6, 2, 7, 5, 6, 0, 5, 2, 7, 9, 7, 2, 2, 0, 5, 5, 2, 5, 6, 0, 1, 2, 8, 2, 9, 2, 6, 0, 2, 2, 7, 8, 9, 8, 9, 9, 5, 2, 0, 7, 9, 8, 7, 6, 8, 9, 4, 7, 1, 8, 9, 8, 7, 7, 6, 9, 9, 8, 6, 6, 2, 0, 8, 3, 5, 8
Offset: 1

Views

Author

Rick L. Shepherd, Jun 24 2006

Keywords

Comments

Side length of the largest equilateral triangle that can be inscribed in a unit square (as stated in MathWorld/Weisstein link).
A quartic integer. - Charles R Greathouse IV, Aug 27 2017

Examples

			1.03527618041008304939559535049619331339627560527972...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.

Crossrefs

Programs

Formula

Equals sec(Pi/12) = sec(A019679) = sqrt(6) - sqrt(2) = A010464 - A002193 = csc(5*Pi/12) = 1/sin(5*Pi/12) = 1/sin(10*A019691) = 1/A019884.
Equals Product_{k >= 1} 1/(1 - 1/(36*(2*k - 1)^2)). - Antonio Graciá Llorente, Mar 20 2024
From Amiram Eldar, Nov 24 2024: (Start)
Equals 2*A101263.
Equals Product_{k>=1} (1 - (-1)^k/A092242(k)). (End)
Smallest positive of the 4 real-valued roots of x^4-16*x^2+16=0. - R. J. Mathar, Aug 31 2025

A272534 Decimal expansion of the edge length of a regular 15-gon with unit circumradius.

Original entry on oeis.org

4, 1, 5, 8, 2, 3, 3, 8, 1, 6, 3, 5, 5, 1, 8, 6, 7, 4, 2, 0, 3, 4, 8, 4, 5, 6, 8, 8, 1, 0, 2, 5, 0, 3, 3, 2, 4, 3, 3, 1, 6, 9, 5, 2, 1, 2, 5, 5, 4, 4, 7, 6, 7, 2, 8, 1, 4, 3, 6, 3, 9, 4, 7, 7, 6, 4, 7, 6, 5, 6, 5, 1, 3, 2, 8, 1, 4, 8, 7, 5, 2, 6, 0, 9, 2, 5, 7, 5, 1, 3, 4, 4, 5, 4, 5, 5, 1, 4, 6, 1, 1, 5, 7, 3, 0
Offset: 0

Views

Author

Stanislav Sykora, May 02 2016

Keywords

Comments

15-gon is the first m-gon with odd composite m which is constructible (see A003401) in virtue of the fact that 15 is the product of two distinct Fermat primes (A019434). The next such case is 51-gon (m=3*17), followed by 85-gon (m=5*17), 771-gon (m=3*257), etc.
From Wolfdieter Lang, Apr 29 2018: (Start)
This constant appears in a historic problem posed by Adriaan van Roomen (Adrianus Romanus) in his Ideae mathematicae from 1593, solved by Viète. See the Havil reference, problem 4, pp. 69-74. See also the comments in A302711 with a link to Romanus' book, Exemplum quaesitum.
This problem is equivalent to R(45, 2*sin(Pi/675)) = 2*sin(Pi/15), with a special case of monic Chebyshev polynomials of the first kind, named R, given in A127672. For the constant 2*sin(Pi/675) see A302716. (End)

Examples

			0.415823381635518674203484568810250332433169521255447672814363947...
		

References

  • Julian Havil, The Irrationals, A Story of the Numbers You Can't Count On, Princeton University Press, Princeton and Oxford, 2012, pp. 69-74.

Crossrefs

Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272535 (16), A228787 (17), A272536 (20).

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/15], 100]][[1]] (* Robert Price, May 02 2016*)
  • PARI
    2*sin(Pi/15)

Formula

Equals 2*sin(Pi/m) for m=15, 2*A019821.
Also equals (sqrt(3) - sqrt(15) + sqrt(10 + 2*sqrt(5)))/4.
Also equals sqrt(7 - sqrt(5) - sqrt(30 - 6*sqrt(5)))/2. This is the rewritten expression of the Havil reference on top of p. 70. - Wolfdieter Lang, Apr 29 2018

A108412 Expansion of (1 + x + x^2)/(1 - 4x^2 + x^4).

Original entry on oeis.org

1, 1, 5, 4, 19, 15, 71, 56, 265, 209, 989, 780, 3691, 2911, 13775, 10864, 51409, 40545, 191861, 151316, 716035, 564719, 2672279, 2107560, 9973081, 7865521, 37220045, 29354524, 138907099, 109552575, 518408351, 408855776, 1934726305
Offset: 0

Views

Author

Ralf Stephan, Jun 05 2005

Keywords

Comments

This is the sequence of Lehmer numbers u_n(sqrt(R),Q) with the parameters R = 6 and Q = 1. It is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all natural numbers n and m. The sequence satisfies a linear recurrence of order four. - Peter Bala, Apr 18 2014
The sequence of convergents of the 2-periodic continued fraction [0; 1, -6, 1, -6, ...] = 1/(1 - 1/(6 - 1/(1 - 1/(6 - ...)))) = 3 - sqrt(3) begins [0/1, 1/1, 6/5, 5/4, 24/19, 19/15, 90/71,...]. The present sequence is the sequence of denominators; the sequence of numerators of the continued fraction convergents [1, 6, 5, 24, 19, 90,...] is also a strong divisibility sequence. Cf. A005013 and A203976. - Peter Bala, May 19 2014
From Peter Bala, Mar 25 2018: (Start)
The following remarks assume an offset of 1.
Define a binary operation o on the real numbers by x o y = x*sqrt(1 + (1/2)*y^2) + y*sqrt(1 + (1/2)*x^2). The operation o is commutative and associative with identity 0. We have a(2*n + 1) = 1 o 1 o ... o 1 (2*n + 1 terms) and sqrt(6)*a(2*n) = (1 o 1 o ... o 1) (2*n terms). Cf. A005013 and A084068. For example, 1 o 1 = sqrt(6) and 1 o 1 o 1 = sqrt(6) o 1 = 5 = a(3).
From the obvious identity ( 1 o 1 o ... o 1 (2*n terms) ) o ( 1 o 1 o ... o 1 (2*m terms) ) = 1 o 1 o ... o 1 (2*n + 2*m terms) we find the relation a(2*n+2*m) = a(2*n)*sqrt(1 + 3*a(2*m)^2) + a(2*m)*sqrt(1 + 3*a(2*n)^2).
Similarly, from a(2*n+1) o a(2*m+1) = sqrt(6)*a(2*n+2*m+2) we find sqrt(6)*a(2*n+2*m+2) = a(2*n+1)*sqrt(1 + (1/2)*a(2*m+1)^2) + a(2*m+1)*sqrt(1 + (1/2)*a(2*n+1)^2). (End)

Examples

			G.f. = 1 + x + 5*x^2 + 4*x^3 + 19*x^4 + 15*x^5 + 71*x^6 + 56*x^7 + ...
		

Crossrefs

Programs

  • Maple
    a := proc (n) if `mod`(n, 2) = 1 then 1/sqrt(2)*( ((sqrt(6) + sqrt(2))/2 )^n - ( (sqrt(6) - sqrt(2))/2 )^n) else 1/sqrt(12)*( ((sqrt(6) + sqrt(2))/2 )^n - ( (sqrt(6) - sqrt(2))/2 )^n) end if;
    end proc:
    seq(simplify(a(n)), n = 1..30); # Peter Bala, Mar 25 2018
  • Mathematica
    CoefficientList[Series[(1+x+x^2)/(1-4x^2+x^4),{x,0,40}],x] (* or *) LinearRecurrence[{0,4,0,-1},{1,1,5,4},40] (* Harvey P. Dale, Nov 15 2012 *)
  • PARI
    {a(n) = my( w = quadgen(24)); simplify( polchebyshev( n, 2, w/2) / if( n%2, w, 1))}; /* Michael Somos, Feb 10 2015 */

Formula

a(0)=a(1)=1, a(2)=5, a(n)a(n+3) - a(n+1)a(n+2) = -1.
a(0)=1, a(1)=1, a(2)=5, a(3)=4, a(n) = 4*a(n-2)-a(n-4). - Harvey P. Dale, Nov 15 2012
a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, and a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even, where alpha = (1/2)*(sqrt(6) + sqrt(2)) (A188887) and beta = (1/2)*(sqrt(6) - sqrt(2)) (A101263). Equivalently, a(n) = U(n-1,sqrt(6)/2) for n odd and a(n) = (1/sqrt(6))*U(n-1,sqrt(6)/2) for n even, where U(n,x) is the Chebyshev polynomial of the second kind. - Peter Bala, Apr 18 2014
a(2*n) = A001834(n). a(2*n + 1) = A001353(n+1). - Michael Somos, Feb 10 2015
a(n) = -a(-2-n) for all n in Z. - Michael Somos, Feb 10 2015

A272535 Decimal expansion of the edge length of a regular 16-gon with unit circumradius.

Original entry on oeis.org

3, 9, 0, 1, 8, 0, 6, 4, 4, 0, 3, 2, 2, 5, 6, 5, 3, 5, 6, 9, 6, 5, 6, 9, 7, 3, 6, 9, 5, 4, 0, 4, 4, 4, 8, 1, 8, 5, 5, 3, 8, 3, 2, 3, 5, 5, 0, 3, 9, 0, 9, 6, 1, 5, 5, 0, 9, 0, 0, 4, 1, 7, 8, 9, 8, 9, 5, 2, 6, 6, 3, 7, 5, 7, 1, 8, 4, 9, 1, 6, 0, 4, 5, 0, 6, 5, 0, 6, 1, 8, 4, 6, 8, 1, 8, 0, 7, 6, 3, 4, 6, 1, 9, 8, 4
Offset: 0

Views

Author

Stanislav Sykora, May 02 2016

Keywords

Comments

Like all m-gons with m equal to a power of 2 (see A003401 and A000079), this is a constructible number.

Examples

			0.390180644032256535696569736954044481855383235503909615509004...
		

Crossrefs

Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A228787 (17), A272536 (20).

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/16], 100]][[1]] (* Robert Price, May 02 2016*)
  • PARI
    2*sin(Pi/16)

Formula

Equals 2*sin(Pi/m) for m=16, 2*A232738. Equals also sqrt(2-sqrt(2+sqrt(2))).

A272536 Decimal expansion of the edge length of a regular 20-gon with unit circumradius.

Original entry on oeis.org

3, 1, 2, 8, 6, 8, 9, 3, 0, 0, 8, 0, 4, 6, 1, 7, 3, 8, 0, 2, 0, 2, 1, 0, 6, 3, 8, 9, 3, 4, 3, 3, 3, 7, 8, 4, 6, 2, 7, 7, 9, 9, 7, 8, 4, 1, 7, 1, 3, 2, 1, 5, 8, 0, 1, 6, 9, 2, 8, 2, 6, 9, 2, 1, 1, 5, 5, 1, 7, 5, 8, 6, 6, 1, 1, 2, 4, 7, 1, 5, 8, 6, 7, 3, 3, 9, 1, 7, 4, 5, 3, 5, 3, 6, 9, 7, 3, 7, 6, 7, 5, 0, 2, 8, 0
Offset: 0

Views

Author

Stanislav Sykora, May 02 2016

Keywords

Comments

Since 20-gon is constructible (see A003401), this is a constructible number.

Examples

			0.3128689300804617380202106389343337846277997841713215801692826921...
		

Crossrefs

Cf. A003401.
Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A272535 (16), A228787 (17).
Cf. A019818.

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/20], 100]][[1]] (* Robert Price, May 02 2016*)
  • PARI
    2*sin(Pi/20)

Formula

Equals 2*sin(Pi/20) = 2*A019818.
Equals also (sqrt(2)+sqrt(10)-2*sqrt(5-sqrt(5)))/4.
Equals i^(9/10) + i^(-9/10). - Gary W. Adamson, Jul 08 2022

A281065 Decimal expansion of the greatest minimum separation between ten points in a unit square.

Original entry on oeis.org

4, 2, 1, 2, 7, 9, 5, 4, 3, 9, 8, 3, 9, 0, 3, 4, 3, 2, 7, 6, 8, 8, 2, 1, 7, 6, 0, 6, 5, 0, 2, 9, 8, 0, 9, 1, 6, 1, 0, 3, 6, 7, 2, 1, 4, 0, 7, 2, 6, 1, 2, 2, 3, 2, 1, 6, 5, 4, 3, 7, 5, 4, 5, 4, 0, 6, 5, 1, 7, 2, 9, 3, 9, 2, 2, 4, 3, 7, 7, 9, 1, 5, 3, 6, 3, 2, 9, 0, 6, 8, 8, 4, 7, 1, 9, 2, 4, 6, 2, 4, 3, 9
Offset: 0

Views

Author

Jeremy Tan, Jan 14 2017

Keywords

Comments

The corresponding values for two to nine points have simple expressions:
N ... d_min
2 ... sqrt(2) (A002193)
3 ... sqrt(6) - sqrt(2) (A120683)
4 ... 1 (A000007)
5 ... sqrt(2) / 2 (A010503)
6 ... sqrt(13) / 6 (A381485)
7 ... 4 - 2*sqrt(3) (A379338)
8 ... sqrt(2 - sqrt(3)) (A101263)
9 ... 1 / 2 (A020761)
In contrast, the value for ten points has a minimal polynomial of degree 18.
The smallest square ten unit circles will fit into has side length s = 2 + 2/d = 6.74744152... and the maximum radius of ten non-overlapping circles in the unit square is 1 / s = 0.14820432...

Examples

			0.421279543983903432768821760650298...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.

Crossrefs

Cf. A281115 (10 points in unit circle), A000007, A002193, A010503, A020761, A101263, A120683, A379338, A381485.

Programs

  • Mathematica
    RealDigits[x /. FindRoot[x^Range[18, 0, -1].{1180129, -11436428, 98015844, -462103584, 1145811528, -1398966480, 227573920, 1526909568, -1038261808, -2960321792, 7803109440, -9722063488, 7918461504, -4564076288, 1899131648, -563649536, 114038784, -14172160, 819200}, {x, 2/5}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Feb 24 2025 *)
  • PARI
    my(p = Pol([1180129, -11436428, 98015844, -462103584, 1145811528, -1398966480, 227573920, 1526909568, -1038261808, -2960321792, 7803109440, -9722063488, 7918461504, -4564076288, 1899131648, -563649536, 114038784, -14172160, 819200])); polrootsreal(p)[1]

Formula

d is the smallest real root of 1180129*d^18 - 11436428*d^17 + 98015844*d^16 - 462103584*d^15 + 1145811528*d^14 - 1398966480*d^13 + 227573920*d^12 + 1526909568*d^11 - 1038261808*d^10 - 2960321792*d^9 + 7803109440*d^8 - 9722063488*d^7 + 7918461504*d^6 - 4564076288*d^5 + 1899131648*d^4 - 563649536*d^3 + 114038784*d^2 - 14172160*d + 819200.
Showing 1-10 of 11 results. Next