cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A010503 Decimal expansion of 1/sqrt(2).

Original entry on oeis.org

7, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9, 3, 7, 6, 7, 1, 6, 3, 8, 2, 0, 7, 8, 6, 3, 6, 7, 5, 0, 6
Offset: 0

Views

Author

Keywords

Comments

The decimal expansion of sqrt(50) = 5*sqrt(2) = 7.0710678118654752440... gives essentially the same sequence.
Also real and imaginary part of the square root of the imaginary unit. - Alonso del Arte, Jan 07 2011
1/sqrt(2) = (1/2)^(1/2) = (1/4)^(1/4) (see the comments in A072364).
If a triangle has sides whose lengths form a harmonic progression in the ratio 1 : 1/(1 + d) : 1/(1 + 2d) then the triangle inequality condition requires that d be in the range -1 + 1/sqrt(2) < d < 1/sqrt(2). - Frank M Jackson, Oct 11 2011
Let s_2(n) be the sum of the base-2 digits of n and epsilon(n) = (-1)^s_2(n), the Thue-Morse sequence A010060, then Product_{n >= 0} ((2*n + 1)/(2*n + 2))^epsilon(n) = 1/sqrt(2). - Jonathan Vos Post, Jun 03 2012
The square root of 1/2 and thus it follows from the Pythagorean theorem that it is the sine of 45 degrees (and the cosine of 45 degrees). - Alonso del Arte, Sep 24 2012
Circumscribed sphere radius for a regular octahedron with unit edges. In electrical engineering, ratio of effective amplitude to peak amplitude of an alternating current/voltage. - Stanislav Sykora, Feb 10 2014
Radius of midsphere (tangent to edges) in a cube with unit edges. - Stanislav Sykora, Mar 27 2014
Positive zero of the Hermite polynomial of degree 2. - A.H.M. Smeets, Jun 02 2025

Examples

			0.7071067811865475...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Sections 1.1, 7.5.2, and 8.2, pp. 1-3, 468, 484, 487.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. A073084 (infinite tetration limit).
Platonic solids circumradii: A010527 (cube), A019881 (icosahedron), A179296 (dodecahedron), A187110 (tetrahedron).
Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A019863 (icosahedron), A239798 (dodecahedron).

Programs

  • Magma
    1/Sqrt(2); // Vincenzo Librandi, Feb 21 2016
  • Maple
    Digits:=100; evalf(1/sqrt(2)); Wesley Ivan Hurt, Mar 27 2014
  • Mathematica
    N[ 1/Sqrt[2], 200]
    RealDigits[1/Sqrt[2],10,120][[1]] (* Harvey P. Dale, Mar 25 2019 *)
  • PARI
    default(realprecision, 20080); x=10*(1/sqrt(2)); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b010503.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009
    

Formula

1/sqrt(2) = cos(Pi/4) = sqrt(2)/2. - Eric Desbiaux, Nov 05 2008
a(n) = 9 - A268682(n). As constants, this sequence is 1 - A268682. - Philippe Deléham, Feb 21 2016
From Amiram Eldar, Jun 29 2020: (Start)
Equals sin(Pi/4) = cos(Pi/4).
Equals Integral_{x=0..Pi/4} cos(x) dx. (End)
Equals (1/2)*A019884 + A019824 * A010527 = A019851 * A019896 + A019812 * A019857. - R. J. Mathar, Jan 27 2021
Equals hypergeom([-1/2, -3/4], [5/4], -1). - Peter Bala, Mar 02 2022
Limit_{n->oo} (sqrt(T(n+1)) - sqrt(T(n))) = 1/sqrt(2), where T(n) = n(n+1)/2 = A000217(n) is the triangular numbers. - Jules Beauchamp, Sep 18 2022
Equals Product_{k>=0} ((2*k+1)/(2*k+2))^((-1)^A000120(k)) (Woods, 1978). - Amiram Eldar, Feb 04 2024
From Stefano Spezia, Oct 15 2024: (Start)
Equals 1 + Sum_{k>=1} (-1)^k*binomial(2*k,k)/2^(2*k) [Newton].
Equal Product_{k>=1} 1 - 1/(4*(2*k - 1)^2). (End)
Equals Product_{k>=0} (1 - (-1)^k/(6*k+3)). - Amiram Eldar, Nov 22 2024

Extensions

More terms from Harry J. Smith, Jun 02 2009

A020761 Decimal expansion of 1/2.

Original entry on oeis.org

5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Real part of all nontrivial zeros of the Riemann zeta function (assuming the Riemann hypothesis to be true). - Alonso del Arte, Jul 02 2011
Radius of a sphere with surface area Pi. - Omar E. Pol, Aug 09 2012
Radius of the midsphere (tangent to the edges) in a regular octahedron with unit edges. Also radius of the inscribed sphere (tangent to faces) in a cube with unit edges. - Stanislav Sykora, Mar 27 2014
Construct a rectangle of maximal area inside an arbitrary triangle. The ratio of the rectangle's area to the triangle's area is 1/2. - Rick L. Shepherd, Jul 30 2014

Examples

			1/2 = 0.50000000000000...
		

Crossrefs

Cf. In platonic solids:
midsphere radii:
A020765 (tetrahedron),
A010503 (cube),
A019863 (icosahedron),
A239798 (dodecahedron);
insphere radii:
A020781 (tetrahedron),
A020763 (octahedron),
A179294 (icosahedron),
A237603 (dodecahedron).

Programs

  • Maple
    Digits:=100; evalf(1/2); # Wesley Ivan Hurt, Mar 27 2014
  • Mathematica
    RealDigits[1/2, 10, 128][[1]] (* Alonso del Arte, Dec 13 2013 *)
    LinearRecurrence[{1},{5,0},99] (* Ray Chandler, Jul 15 2015 *)
  • PARI
    { default(realprecision); x=1/2*10; for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) } \\ Felix Fröhlich, Jul 24 2014
    
  • PARI
    a(n) = 5*(n==0); \\ Michel Marcus, Jul 25 2014

Formula

Equals Sum_{k>=1} (1/3^k). Hence 1/2 = 0.1111111111111... in base 3.
Cosine of 60 degrees, i.e., cos(Pi/3).
-zeta(0), zeta being the Riemann function. - Stanislav Sykora, Mar 27 2014
a(0) = 5; a(n) = 0, n > 0. - Wesley Ivan Hurt, Mar 27 2014
a(n) = 5 * floor(1/(n + 1)). - Wesley Ivan Hurt, Mar 27 2014
Equals 2*A019824*A019884. - R. J. Mathar, Jan 17 2021

A019973 Decimal expansion of tangent of 75 degrees.

Original entry on oeis.org

3, 7, 3, 2, 0, 5, 0, 8, 0, 7, 5, 6, 8, 8, 7, 7, 2, 9, 3, 5, 2, 7, 4, 4, 6, 3, 4, 1, 5, 0, 5, 8, 7, 2, 3, 6, 6, 9, 4, 2, 8, 0, 5, 2, 5, 3, 8, 1, 0, 3, 8, 0, 6, 2, 8, 0, 5, 5, 8, 0, 6, 9, 7, 9, 4, 5, 1, 9, 3, 3, 0, 1, 6, 9, 0, 8, 8, 0, 0, 0, 3, 7, 0, 8, 1, 1, 4, 6, 1, 8, 6, 7, 5, 7, 2, 4, 8, 5, 7
Offset: 1

Views

Author

Keywords

Comments

An equivalent definition of this sequence: decimal expansion of x > 1 satisfying x^2 - 4*x + 1 = 0. - Arkadiusz Wesolowski, Nov 28 2011
An algebraic integer of degree 2 with minimal polynomial x^2 - 4*x + 1. - Charles R Greathouse IV, Oct 17 2016
Length of the second longest diagonal in a regular 12-gon with unit side. - Mohammed Yaseen, Dec 13 2020

Examples

			3.732050807568877293527446341505872366942805253810380628...
		

Crossrefs

Programs

Formula

Equals 2 + sqrt(3) = 2+A002194 = cotangent of 15 degrees. - Rick L. Shepherd, Jul 04 2004
Equals exp(arccosh(2)). - Amiram Eldar, Aug 07 2023
c^n = A001835(n) + (1 + sqrt(3)) * A001353(n) = A001075(n) + sqrt(3) * A001353(n); where c = 2 + sqrt(3). - Gary W. Adamson, Oct 14 2023
Equals lim_{n->oo} S(n, 4)/ S(n-1, 4), with the S-Chebyshev polynomial (see A049310) S(n, 4) = A001353(n+1). See the A001353 formula from Oct 06 2002 by Gregory V. Richardson. - Wolfdieter Lang, Nov 15 2023
Equals A019884 / A019824. - R. J. Mathar, Jan 12 2024
Equals 1/A019913. - Hugo Pfoertner, Mar 24 2024

Extensions

Checked by Neven Juric (neven.juric(AT)apis-it.hr), Feb 04 2008

A101263 Decimal expansion of sqrt(2 - sqrt(3)), edge length of a regular dodecagon with circumradius 1.

Original entry on oeis.org

5, 1, 7, 6, 3, 8, 0, 9, 0, 2, 0, 5, 0, 4, 1, 5, 2, 4, 6, 9, 7, 7, 9, 7, 6, 7, 5, 2, 4, 8, 0, 9, 6, 6, 5, 6, 6, 9, 8, 1, 3, 7, 8, 0, 2, 6, 3, 9, 8, 6, 1, 0, 2, 7, 6, 2, 8, 0, 0, 6, 4, 1, 4, 6, 3, 0, 1, 1, 3, 9, 4, 9, 4, 9, 7, 6, 0, 3, 9, 9, 3, 8, 4, 4, 7, 3, 5, 9, 4, 9, 3, 8, 8, 4, 9, 9, 3, 3
Offset: 0

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jan 25 2005

Keywords

Comments

sqrt(2 - sqrt(3)) is the shape of the lesser sqrt(6)-contraction rectangle, as defined at A188739. - Clark Kimberling, Apr 16 2011
This is a constructible number, since 12-gon is a constructible polygon. See A003401 for more details. - Stanislav Sykora, May 02 2016
It is also smaller positive coordinate of (symmetrical) intersection points of x^2 + y^2 = 4 circle and y = 1/x hyperbola. The bigger coordinate is A188887. - Leszek Lezniak, Sep 18 2018
The greatest possible minimum distance between 8 points in a unit square (Schaer and Meir, 1965; Schaer, 1965; Croft et al., 1991). - Amiram Eldar, Feb 24 2025

Examples

			0.517638090205041524697797675248096656698137802639861027628006414630113....
		

References

  • Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved Problems in Geometry, Springer, 1991, Section D1, p. 108.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.

Crossrefs

Programs

  • Mathematica
    r = 6^(1/2); t = (r - (-4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]  (*A101263*)
    RealDigits[Sqrt[2-Sqrt[3]],10,120][[1]] (* Harvey P. Dale, Apr 24 2018 *)
  • PARI
    2*sin(Pi/12) \\ Stanislav Sykora, May 02 2016

Formula

Equals sqrt(A019913). - R. J. Mathar, Apr 20 2009
Equals 2*sin(Pi/12) = 2*cos(Pi*5/12). - Stanislav Sykora, May 02 2016
Equals i^(5/6) + i^(-5/6). - Gary W. Adamson, Jul 07 2022
From Amiram Eldar, Nov 24 2024: (Start)
Equals A120683 / 2 = 2 * A019824 = 1 / A188887 = exp(-A329247).
Equals (sqrt(3)-1)/sqrt(2).
Equals Product_{k>=1} (1 + (-1)^k/A091999(k)). (End)

A019913 Decimal expansion of tangent of 15 degrees.

Original entry on oeis.org

2, 6, 7, 9, 4, 9, 1, 9, 2, 4, 3, 1, 1, 2, 2, 7, 0, 6, 4, 7, 2, 5, 5, 3, 6, 5, 8, 4, 9, 4, 1, 2, 7, 6, 3, 3, 0, 5, 7, 1, 9, 4, 7, 4, 6, 1, 8, 9, 6, 1, 9, 3, 7, 1, 9, 4, 4, 1, 9, 3, 0, 2, 0, 5, 4, 8, 0, 6, 6, 9, 8, 3, 0, 9, 1, 1, 9, 9, 9, 6, 2, 9, 1, 8, 8, 5, 3, 8, 1, 3, 2, 4, 2, 7, 5, 1, 4, 2, 4
Offset: 0

Views

Author

Keywords

Comments

Also, 2 - sqrt(3) = cotangent of 75 degrees. An equivalent definition of this sequence: decimal expansion of x < 1 satisfying x^2 - 4*x + 1 = 0. - Arkadiusz Wesolowski, Nov 29 2011
Multiplied by -1 (that is, -2 + sqrt(3)), this is one of three real solutions to x^3 = 15x + 4. The other two are 4 and -2 - sqrt(3), all of which can be found with Viete's formula. - Alonso del Arte, Dec 15 2012
Wentworth (1903) shows how to compute the tangent of 15 degrees to five decimal places by the laborious process of adding up the first few terms of Pi/12 + Pi^3/5184 + 2Pi^5/3732480 + 17Pi^7/11287019520 + ... - Alonso del Arte, Mar 13 2015
A quadratic integer. - Charles R Greathouse IV, Aug 27 2017
This is the radius of the largest sphere that can be placed in the space between a sphere of radius 1 and the corners of its circumscribing cube. - Amiram Eldar, Jul 11 2020

Examples

			0.2679491924311227064725536...
		

References

  • Paul J. Nahin, An Imaginary Tale: The Story of sqrt(-1). Princeton, New Jersey: Princeton University Press (1988): 22 - 23.

Crossrefs

Cf. A002194 (sqrt(3)).

Programs

Formula

Equals Sum_{k>=1} binomial(2*k,k)/(6^k*(k+1)). - Amiram Eldar, Jul 11 2020
Equals exp(-arccosh(2)). - Amiram Eldar, Jul 06 2023
tan(Pi/12) = A019824 / A019884. - R. J. Mathar, Aug 31 2025

A232736 Decimal expansion of sin(Pi/14), or the imaginary part of (-1)^(1/7).

Original entry on oeis.org

2, 2, 2, 5, 2, 0, 9, 3, 3, 9, 5, 6, 3, 1, 4, 4, 0, 4, 2, 8, 8, 9, 0, 2, 5, 6, 4, 4, 9, 6, 7, 9, 4, 7, 5, 9, 4, 6, 6, 3, 5, 5, 5, 6, 8, 7, 6, 4, 5, 4, 4, 9, 5, 5, 3, 1, 1, 9, 8, 7, 0, 1, 5, 8, 9, 7, 4, 2, 1, 2, 3, 2, 0, 2, 8, 5, 4, 7, 3, 1, 9, 0, 7, 4, 5, 8, 1, 0, 5, 2, 6, 0, 8, 0, 7, 2, 9, 5, 6, 3, 4, 8, 7, 4, 7
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding real part is in A232735.
Root of the equation 1 - 4*x - 4*x^2 + 8*x^3 = 0. - Vaclav Kotesovec, Apr 04 2021
The other 2 roots are -A362922 and A073052. - R. J. Mathar, Aug 29 2025

Examples

			0.222520933956314404288902564496794759466355568764544955311987...
		

Crossrefs

Cf. A232735 (real part), A010503 (imag(I^(1/2))), A182168 (imag(I^(1/4))), A019827 (imag(I^(1/5))), A019824 (imag(I^(1/6))), A232738 (imag(I^(1/8))), A019819 (imag(I^(1/9))), A019818 (imag(I^(1/10))).
See also A323601.

Programs

Formula

Equals cos(3*Pi/7). - G. C. Greubel, Sep 04 2022
Equals 4*A073052^3 -3*A073052. - R. J. Mathar, Aug 29 2025
This^2 + A232735^2 = 1. - R. J. Mathar, Aug 31 2025

A384473 Decimal expansion of the middle interior angle (in degrees) in Albrecht Dürer's approximate construction of the regular pentagon.

Original entry on oeis.org

1, 0, 8, 3, 6, 6, 1, 2, 0, 1, 6, 2, 5, 6, 1, 4, 6, 7, 0, 0, 8, 0, 4, 6, 9, 3, 5, 2, 7, 7, 1, 6, 4, 4, 2, 9, 8, 9, 6, 1, 3, 3, 4, 3, 1, 0, 0, 3, 4, 2, 3, 5, 2, 3, 9, 7, 3, 8, 8, 0, 2, 8, 4, 3, 2, 0, 7, 0, 3, 4, 6, 2, 9, 1, 5, 7, 9, 8, 0, 4, 9, 4, 1, 5, 2, 1, 2, 4, 6, 8, 8, 1, 2, 1, 0, 1, 3, 3, 1, 8
Offset: 3

Views

Author

Stefano Spezia, May 30 2025

Keywords

Examples

			108.366120162561467008046935277164429896133431...
		

References

  • Alfred S. Posamentier and Herbert A. Hauptman, 101 great ideas for introducing key concepts in mathematics: a resource for secondary school teachers, Corwin Press, Inc., 2001. See pages 144-145.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 181-182.

Crossrefs

Programs

  • Mathematica
    RealDigits[(3Pi/4-ArcSin[Sqrt[3]Sin[Pi/12]])180/Pi,10,100][[1]] (* or *)
    RealDigits[(Pi+ArcTan[(3-Sqrt[3]+Sqrt[6Sqrt[3]-4])/(3-Sqrt[3]-Sqrt[6Sqrt[3]-4])])180/Pi,10,100][[1]]

Formula

Equals 135 - 180*arcsin(sqrt(3)*sin(Pi/12))/Pi.
Equals (Pi + arctan((3 - sqrt(3) + sqrt(6*sqrt(3) - 4))/(3 - sqrt(3) - sqrt(6*sqrt(3) - 4))))*180/Pi.
Equals (540 - 2*A384475 - A384477)/2.
A384475 < this constant < A384477.

A384474 Decimal expansion of the middle interior angle (in radians) in Albrecht Dürer's approximate construction of the regular pentagon.

Original entry on oeis.org

1, 8, 9, 1, 3, 4, 5, 5, 9, 4, 4, 4, 8, 5, 1, 0, 4, 1, 8, 6, 8, 7, 1, 7, 3, 4, 7, 8, 9, 5, 2, 7, 3, 9, 1, 9, 9, 0, 2, 4, 7, 7, 9, 2, 2, 5, 3, 0, 7, 7, 4, 6, 9, 6, 6, 9, 2, 7, 7, 4, 8, 7, 7, 0, 3, 7, 2, 8, 8, 7, 5, 9, 6, 9, 4, 5, 8, 5, 4, 4, 4, 3, 1, 4, 7, 8, 6, 3, 2, 3, 2, 3, 2, 2, 6, 8, 1, 0, 3, 1
Offset: 1

Views

Author

Stefano Spezia, May 30 2025

Keywords

Examples

			1.891345594448510418687173478952739199024779225...
		

References

  • Alfred S. Posamentier and Herbert A. Hauptman, 101 great ideas for introducing key concepts in mathematics: a resource for secondary school teachers, Corwin Press, Inc., 2001. See pages 144-145.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 181-182.

Crossrefs

Cf. A228719, A384473 (in degrees).

Programs

  • Mathematica
    RealDigits[3Pi/4-ArcSin[Sqrt[3]Sin[Pi/12]],10,100][[1]] (* or *)
    RealDigits[Pi+ArcTan[(3-Sqrt[3]+Sqrt[6Sqrt[3]-4])/(3-Sqrt[3]-Sqrt[6Sqrt[3]-4])],10,100][[1]]

Formula

Equals 3*Pi/4 - arcsin(sqrt(3)*sin(Pi/12)).
Equals Pi + arctan((3 - sqrt(3) + sqrt(6*sqrt(3) - 4))/(3 - sqrt(3) - sqrt(6*sqrt(3) - 4))).
Equals (3*Pi - 2*A384476 - A384478)/2.
A384476 < this constant < A384478.

A232738 Decimal expansion of the imaginary part of I^(1/8), or sin(Pi/16).

Original entry on oeis.org

1, 9, 5, 0, 9, 0, 3, 2, 2, 0, 1, 6, 1, 2, 8, 2, 6, 7, 8, 4, 8, 2, 8, 4, 8, 6, 8, 4, 7, 7, 0, 2, 2, 2, 4, 0, 9, 2, 7, 6, 9, 1, 6, 1, 7, 7, 5, 1, 9, 5, 4, 8, 0, 7, 7, 5, 4, 5, 0, 2, 0, 8, 9, 4, 9, 4, 7, 6, 3, 3, 1, 8, 7, 8, 5, 9, 2, 4, 5, 8, 0, 2, 2, 5, 3, 2, 5, 3, 0, 9, 2, 3, 4, 0, 9, 0, 3, 8, 1, 7, 3, 0, 9, 9, 2
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding real part is in A232737.

Examples

			0.195090322016128267848284868477022240927691617751954807754502...
		

Crossrefs

Cf. A232737 (real part), A010503 (imag(I^(1/2))), A182168 (imag(I^(1/4))), A019827 (imag(I^(1/5))), A019824 (imag(I^(1/6))), A232736 (imag(I^(1/7))), A019819 (imag(I^(1/9))), A019818 (imag(I^(1/10))).

Programs

Formula

Equals (1/2) * sqrt(2-sqrt(2+sqrt(2))). - Seiichi Manyama, Apr 04 2021
This^2 + A232737^2 = 1.
Smallest positive of the 8 real-valued roots of 128*x^8-256*x^6+160*x^4-32*x^2+1=0.

A280819 Decimal expansion of 12*sin(Pi/12).

Original entry on oeis.org

3, 1, 0, 5, 8, 2, 8, 5, 4, 1, 2, 3, 0, 2, 4, 9, 1, 4, 8, 1, 8, 6, 7, 8, 6, 0, 5, 1, 4, 8, 8, 5, 7, 9, 9, 4, 0, 1, 8, 8, 8, 2, 6, 8, 1, 5, 8, 3, 9, 1, 6, 6, 1, 6, 5, 7, 6, 8, 0, 3, 8, 4, 8, 7, 7, 8, 0, 6, 8, 3, 6, 9, 6, 9, 8, 5, 6, 2, 3, 9, 6, 3, 0, 6, 8, 4, 1, 5, 6, 9, 6, 3, 3, 0, 9, 9, 5, 9, 8, 6, 2, 5, 0, 7, 4
Offset: 1

Views

Author

Rick L. Shepherd, Jan 08 2017

Keywords

Comments

The ratio of the perimeter of a regular 12-gon (dodecagon) to its diameter (greatest diagonal).
A quartic integer: the least positive root of x^4 - 144x^2 + 1296.

Examples

			3.105828541230249148186786051488579940188826815839166165768038487780683696...
		

Crossrefs

Cf. For other n-gons: A010466 (n=4), 10*A019827 (n=5, 10), A280533 (n=7), A280585 (n=8), A280633 (n=9), A280725 (n=11).

Programs

Formula

Showing 1-10 of 12 results. Next