cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A019973 Decimal expansion of tangent of 75 degrees.

Original entry on oeis.org

3, 7, 3, 2, 0, 5, 0, 8, 0, 7, 5, 6, 8, 8, 7, 7, 2, 9, 3, 5, 2, 7, 4, 4, 6, 3, 4, 1, 5, 0, 5, 8, 7, 2, 3, 6, 6, 9, 4, 2, 8, 0, 5, 2, 5, 3, 8, 1, 0, 3, 8, 0, 6, 2, 8, 0, 5, 5, 8, 0, 6, 9, 7, 9, 4, 5, 1, 9, 3, 3, 0, 1, 6, 9, 0, 8, 8, 0, 0, 0, 3, 7, 0, 8, 1, 1, 4, 6, 1, 8, 6, 7, 5, 7, 2, 4, 8, 5, 7
Offset: 1

Views

Author

Keywords

Comments

An equivalent definition of this sequence: decimal expansion of x > 1 satisfying x^2 - 4*x + 1 = 0. - Arkadiusz Wesolowski, Nov 28 2011
An algebraic integer of degree 2 with minimal polynomial x^2 - 4*x + 1. - Charles R Greathouse IV, Oct 17 2016
Length of the second longest diagonal in a regular 12-gon with unit side. - Mohammed Yaseen, Dec 13 2020

Examples

			3.732050807568877293527446341505872366942805253810380628...
		

Crossrefs

Programs

Formula

Equals 2 + sqrt(3) = 2+A002194 = cotangent of 15 degrees. - Rick L. Shepherd, Jul 04 2004
Equals exp(arccosh(2)). - Amiram Eldar, Aug 07 2023
c^n = A001835(n) + (1 + sqrt(3)) * A001353(n) = A001075(n) + sqrt(3) * A001353(n); where c = 2 + sqrt(3). - Gary W. Adamson, Oct 14 2023
Equals lim_{n->oo} S(n, 4)/ S(n-1, 4), with the S-Chebyshev polynomial (see A049310) S(n, 4) = A001353(n+1). See the A001353 formula from Oct 06 2002 by Gregory V. Richardson. - Wolfdieter Lang, Nov 15 2023
Equals A019884 / A019824. - R. J. Mathar, Jan 12 2024
Equals 1/A019913. - Hugo Pfoertner, Mar 24 2024

Extensions

Checked by Neven Juric (neven.juric(AT)apis-it.hr), Feb 04 2008

A101263 Decimal expansion of sqrt(2 - sqrt(3)), edge length of a regular dodecagon with circumradius 1.

Original entry on oeis.org

5, 1, 7, 6, 3, 8, 0, 9, 0, 2, 0, 5, 0, 4, 1, 5, 2, 4, 6, 9, 7, 7, 9, 7, 6, 7, 5, 2, 4, 8, 0, 9, 6, 6, 5, 6, 6, 9, 8, 1, 3, 7, 8, 0, 2, 6, 3, 9, 8, 6, 1, 0, 2, 7, 6, 2, 8, 0, 0, 6, 4, 1, 4, 6, 3, 0, 1, 1, 3, 9, 4, 9, 4, 9, 7, 6, 0, 3, 9, 9, 3, 8, 4, 4, 7, 3, 5, 9, 4, 9, 3, 8, 8, 4, 9, 9, 3, 3
Offset: 0

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jan 25 2005

Keywords

Comments

sqrt(2 - sqrt(3)) is the shape of the lesser sqrt(6)-contraction rectangle, as defined at A188739. - Clark Kimberling, Apr 16 2011
This is a constructible number, since 12-gon is a constructible polygon. See A003401 for more details. - Stanislav Sykora, May 02 2016
It is also smaller positive coordinate of (symmetrical) intersection points of x^2 + y^2 = 4 circle and y = 1/x hyperbola. The bigger coordinate is A188887. - Leszek Lezniak, Sep 18 2018
The greatest possible minimum distance between 8 points in a unit square (Schaer and Meir, 1965; Schaer, 1965; Croft et al., 1991). - Amiram Eldar, Feb 24 2025

Examples

			0.517638090205041524697797675248096656698137802639861027628006414630113....
		

References

  • Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved Problems in Geometry, Springer, 1991, Section D1, p. 108.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.

Crossrefs

Programs

  • Mathematica
    r = 6^(1/2); t = (r - (-4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]  (*A101263*)
    RealDigits[Sqrt[2-Sqrt[3]],10,120][[1]] (* Harvey P. Dale, Apr 24 2018 *)
  • PARI
    2*sin(Pi/12) \\ Stanislav Sykora, May 02 2016

Formula

Equals sqrt(A019913). - R. J. Mathar, Apr 20 2009
Equals 2*sin(Pi/12) = 2*cos(Pi*5/12). - Stanislav Sykora, May 02 2016
Equals i^(5/6) + i^(-5/6). - Gary W. Adamson, Jul 07 2022
From Amiram Eldar, Nov 24 2024: (Start)
Equals A120683 / 2 = 2 * A019824 = 1 / A188887 = exp(-A329247).
Equals (sqrt(3)-1)/sqrt(2).
Equals Product_{k>=1} (1 + (-1)^k/A091999(k)). (End)

A092735 Decimal expansion of Pi^7.

Original entry on oeis.org

3, 0, 2, 0, 2, 9, 3, 2, 2, 7, 7, 7, 6, 7, 9, 2, 0, 6, 7, 5, 1, 4, 2, 0, 6, 4, 9, 3, 0, 7, 2, 0, 4, 1, 8, 3, 1, 9, 1, 7, 4, 3, 2, 4, 7, 5, 2, 9, 5, 4, 0, 2, 2, 6, 2, 7, 5, 4, 2, 3, 4, 4, 9, 2, 3, 8, 3, 1, 3, 4, 6, 6, 7, 2, 9, 3, 6, 1, 1, 8, 8, 0, 9, 3, 8, 4, 5, 2, 6, 2, 3, 0, 9, 0, 0, 0, 9, 7, 3, 5, 5, 6, 8, 6, 3
Offset: 4

Views

Author

Mohammad K. Azarian, Apr 12 2004

Keywords

Comments

Wentworth (1903) shows how to compute the tangent of 15 degrees (A019913) to five decimal places by the laborious process of adding up the first few terms of Pi/12 + Pi^3/5184 + 2Pi^5/3732480 + 17Pi^7/11287019520 + ... - Alonso del Arte, Mar 13 2015

Examples

			3020.293227776792067514206493...
		

References

  • George Albert Wentworth, New Plane and Spherical Trigonometry, Surveying, and Navigation. Boston: The Atheneum Press (1903): 240.

Crossrefs

Programs

Formula

From Peter Bala, Oct 30 2019: (Start)
Pi^7 = (6!/(2*33367)) * Sum_{n >= 0} (-1)^n*( 1/(n + 1/6)^7 + 1/(n + 5/6)^7 ), where 33367 = ((3^7 + 1)/4)*A000364(3) = A002437(3).
Pi^7 = (6!/(2*1191391)) * Sum_{n >= 0} (-1)^n*( 1/(n + 1/10)^7 - 1/(n + 3/10)^7 - 1/(n + 7/10)^7 + 1/(n + 9/10)^7 ), where 1191391 = ((5^7 - 1)/4)*A000364(3). (End)

A375069 Decimal expansion of the sagitta of a regular hexagon with unit side length.

Original entry on oeis.org

1, 3, 3, 9, 7, 4, 5, 9, 6, 2, 1, 5, 5, 6, 1, 3, 5, 3, 2, 3, 6, 2, 7, 6, 8, 2, 9, 2, 4, 7, 0, 6, 3, 8, 1, 6, 5, 2, 8, 5, 9, 7, 3, 7, 3, 0, 9, 4, 8, 0, 9, 6, 8, 5, 9, 7, 2, 0, 9, 6, 5, 1, 0, 2, 7, 4, 0, 3, 3, 4, 9, 1, 5, 4, 5, 5, 9, 9, 9, 8, 1, 4, 5, 9, 4, 2, 6, 9, 0, 6
Offset: 0

Views

Author

Paolo Xausa, Jul 30 2024

Keywords

Examples

			0.133974596215561353236276829247063816528597373...
		

Crossrefs

Essentially the same as A334843.
Cf. A010527 (apothem), A104956 (area).
Cf. sagitta of other polygons with unit side length: A020769 (triangle), A174968 (square), A375068 (pentagon), A374972 (heptagon), A375070 (octagon), A375153 (9-gon), A375189 (10-gon), A375192 (11-gon), A375194 (12-gon).

Programs

Formula

Equals tan(Pi/12)/2 = A019913/2.
Equals 1 - sqrt(3)/2 = 1 - A010527.
Equals A152422^2 = (1 - A332133)^2. - Hugo Pfoertner, Jul 30 2024
Equals A334843-1/2. - R. J. Mathar, Aug 02 2024

A375193 Decimal expansion of the apothem (inradius) of a regular 12-gon with unit side length.

Original entry on oeis.org

1, 8, 6, 6, 0, 2, 5, 4, 0, 3, 7, 8, 4, 4, 3, 8, 6, 4, 6, 7, 6, 3, 7, 2, 3, 1, 7, 0, 7, 5, 2, 9, 3, 6, 1, 8, 3, 4, 7, 1, 4, 0, 2, 6, 2, 6, 9, 0, 5, 1, 9, 0, 3, 1, 4, 0, 2, 7, 9, 0, 3, 4, 8, 9, 7, 2, 5, 9, 6, 6, 5, 0, 8, 4, 5, 4, 4, 0, 0, 0, 1, 8, 5, 4, 0, 5, 7, 3, 0, 9
Offset: 1

Views

Author

Paolo Xausa, Aug 04 2024

Keywords

Comments

Apart from the first digit the same as A010527.

Examples

			1.8660254037844386467637231707529361834714026269...
		

Crossrefs

Cf. A188887 (circumradius), A375194 (sagitta), A178809 (area).
Cf. apothem of other polygons with unit side length: A020769 (triangle), A020761 (square), A375067 (pentagon), A010527 (hexagon), A374971 (heptagon), A174968 (octagon), A375152 (9-gon), A179452 (10-gon), A375191 (11-gon).

Programs

Formula

Equals cot(Pi/12)/2 = (2 + sqrt(3))/2 = A019973/2.
Equals 1/(2*tan(Pi/12)) = 1/(2*A019913).
Equals A188887*cos(Pi/12) = A188887*A019884.
Equals A188887 - A375194.
Equals A332133^2 = 2 - A375069. - Hugo Pfoertner, Aug 04 2024

A381157 Decimal expansion of the isoperimetric quotient of a regular 12-gon.

Original entry on oeis.org

9, 7, 7, 0, 4, 8, 6, 1, 6, 6, 5, 6, 8, 5, 3, 3, 3, 5, 7, 2, 5, 6, 2, 6, 7, 9, 4, 9, 5, 7, 1, 2, 2, 7, 4, 7, 1, 0, 3, 8, 7, 8, 1, 2, 8, 5, 8, 5, 7, 0, 2, 7, 8, 0, 7, 2, 1, 6, 2, 8, 6, 6, 5, 8, 9, 8, 3, 3, 3, 5, 2, 9, 6, 6, 2, 6, 2, 3, 3, 0, 4, 0, 2, 5, 7, 0, 3, 7, 1, 7
Offset: 0

Views

Author

Paolo Xausa, Feb 15 2025

Keywords

Comments

For the definition of isoperimetric quotient, see A381152.

Examples

			0.97704861665685333572562679495712274710387812858570...
		

Crossrefs

Cf. isoperimetric quotient of other regular polygons: A073010 (triangle), A003881 (square), A381152 (pentagon), A093766 (hexagon), A381153 (heptagon), A196522 (octagon), A381154 (9-gon), A381155 (10-gon), A381156 (11-gon).

Programs

  • Mathematica
    First[RealDigits[Pi/(12*Tan[Pi/12]), 10, 100]]

Formula

Equals Pi/(12*tan(Pi/12)) = Pi/(12*A019913).
Equals (1/36)*Pi*A178809.

A343057 Decimal expansion of tan(Pi/32).

Original entry on oeis.org

0, 9, 8, 4, 9, 1, 4, 0, 3, 3, 5, 7, 1, 6, 4, 2, 5, 3, 0, 7, 7, 1, 9, 7, 5, 2, 1, 2, 9, 1, 3, 2, 7, 4, 3, 2, 2, 9, 3, 0, 5, 2, 4, 5, 0, 6, 9, 9, 2, 0, 2, 6, 9, 5, 9, 8, 0, 9, 1, 6, 1, 2, 1, 1, 3, 4, 4, 1, 9, 4, 3, 8, 7, 3, 0, 8, 1, 2, 9, 7, 2, 2, 5, 6, 4, 8, 5, 2, 1, 4, 1, 8, 0, 3, 7, 3, 6, 0, 0, 1, 3, 7, 0, 6, 7, 1, 6, 9, 7, 7, 9, 1, 7, 6, 5
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Examples

			0.098491403357164253077197...
		

Crossrefs

Cf. A343055 (sin(Pi/32)), A343056 (cos(Pi/32)).
tan(Pi/m): A002194 (m=3), A019934 (m=5), A020760 (m=6), A343058 (m=7), A188582 (m=8), A019918 (m=9), A019916 (m=10), A019913 (m=12), A343059 (m=14), A019910 (m=15), A343060 (m=16), A343061 (m=17), A019908 (m=18), A019907 (m=20), A343062 (m=24), A019904 (m=30), A343057 (m=32), A019903 (m=36).

Programs

  • Magma
    R:= RealField(125); Tan(Pi(R)/32); // G. C. Greubel, Sep 30 2022
    
  • Mathematica
    RealDigits[Tan[Pi/32], 10, 120, -1][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    tan(Pi/32)
    
  • PARI
    sqrt((2-sqrt(2+sqrt(2+sqrt(2))))/(2+sqrt(2+sqrt(2+sqrt(2)))))
    
  • SageMath
    numerical_approx(tan(pi/32), digits=125) # G. C. Greubel, Sep 30 2022

Formula

Equals sqrt( (2-sqrt(2+sqrt(2+sqrt(2))))/(2+sqrt(2+sqrt(2+sqrt(2)))) ).

A379338 Decimal expansion of 2*(2 - sqrt(3)).

Original entry on oeis.org

5, 3, 5, 8, 9, 8, 3, 8, 4, 8, 6, 2, 2, 4, 5, 4, 1, 2, 9, 4, 5, 1, 0, 7, 3, 1, 6, 9, 8, 8, 2, 5, 5, 2, 6, 6, 1, 1, 4, 3, 8, 9, 4, 9, 2, 3, 7, 9, 2, 3, 8, 7, 4, 3, 8, 8, 8, 3, 8, 6, 0, 4, 1, 0, 9, 6, 1, 3, 3, 9, 6, 6, 1, 8, 2, 3, 9, 9, 9, 2, 5, 8, 3, 7, 7, 0, 7, 6, 2, 6, 4, 8, 5, 5, 0, 2, 8, 4, 8, 6
Offset: 0

Views

Author

Stefano Spezia, Dec 21 2024

Keywords

Comments

The greatest possible minimum distance between 7 points in a unit square (Schaer and Meir, 1965; Schaer, 1965; Croft et al., 1991). - Amiram Eldar, Feb 24 2025

Examples

			0.535898384862245412945107316988255266114389492379...
		

References

  • Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved Problems in Geometry, Springer, 1991, Section D1, p. 108.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.

Crossrefs

Programs

  • Mathematica
    RealDigits[2(2-Sqrt[3]),10,100][[1]]

Formula

Minimal polynomial: x^2 - 8*x + 4. - Stefano Spezia, Aug 03 2025

A354128 Decimal expansion of 7 - 4*sqrt(3).

Original entry on oeis.org

0, 7, 1, 7, 9, 6, 7, 6, 9, 7, 2, 4, 4, 9, 0, 8, 2, 5, 8, 9, 0, 2, 1, 4, 6, 3, 3, 9, 7, 6, 5, 1, 0, 5, 3, 2, 2, 2, 8, 7, 7, 8, 9, 8, 4, 7, 5, 8, 4, 7, 7, 4, 8, 7, 7, 7, 6, 7, 7, 2, 0, 8, 2, 1, 9, 2, 2, 6, 7, 9, 3, 2, 3, 6, 4, 7, 9, 9, 8, 5, 1, 6, 7, 5, 4, 1, 5, 2, 5, 2, 9, 7, 1
Offset: 0

Views

Author

Stefano Spezia, May 18 2022

Keywords

Comments

The smallest root of x^2 - 14*x + 1 = 0.

Examples

			0.07179676972449082589021463397651...
		

Crossrefs

Cf. A002194, A010502, A019913 (square root), A354129 (multiplicative inverse).

Programs

  • Mathematica
    First[RealDigits[N[7-4Sqrt[3],92]]]

Formula

Equals (2 - sqrt(3))^2 = A019913^2. - Jianing Song, May 27 2022
Showing 1-9 of 9 results.