A255241 Decimal expansion of 2*cos(3*Pi/7).
4, 4, 5, 0, 4, 1, 8, 6, 7, 9, 1, 2, 6, 2, 8, 8, 0, 8, 5, 7, 7, 8, 0, 5, 1, 2, 8, 9, 9, 3, 5, 8, 9, 5, 1, 8, 9, 3, 2, 7, 1, 1, 1, 3, 7, 5, 2, 9, 0, 8, 9, 9, 1, 0, 6, 2, 3, 9, 7, 4, 0, 3, 1, 7, 9, 4, 8, 4, 2, 4, 6, 4, 0, 5, 7, 0, 9, 4, 6, 3, 8, 1, 4, 9, 1, 6, 2, 1, 0, 5, 2, 1, 6, 1, 4, 5, 9, 1, 2, 6, 9, 7, 4, 9, 4
Offset: 0
Examples
0.445041867912628808577805128993589518932711137529089910623974031...
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..2000
- Wikipedia, Constructible number
- Wikipedia, Regular polygon
- Index entries for algebraic numbers, degree 3
Crossrefs
Programs
-
Magma
R:= RealField(120); 2*Cos(3*Pi(R)/7); // G. C. Greubel, Sep 04 2022
-
Mathematica
RealDigits[N[2Cos[3Pi/7], 100]][[1]] (* Robert Price, May 01 2016 *)
-
PARI
2*sin(Pi/14)
-
PARI
polrootsreal(x^3 - x^2 - 2*x + 1)[2] \\ Charles R Greathouse IV, Oct 30 2023
-
SageMath
numerical_approx(2*cos(3*pi/7), digits=120) # G. C. Greubel, Sep 04 2022
Formula
See A232736 for the decimal expansion of cos(3*Pi/7) = sin(Pi/14).
Equals i^(6/7) - i^(8/7). - Peter Luschny, Apr 04 2020
From Peter Bala, Oct 11 2021: (Start)
Equals 2 - (1 - z^3)*(1 - z^4)/((1 - z^2)*(1 - z^5)), where z = exp(2*Pi*i/7).
Equals 1 - A255240. (End)
Extensions
Offset corrected by Stanislav Sykora, May 01 2016
Comments