cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A255241 Decimal expansion of 2*cos(3*Pi/7).

Original entry on oeis.org

4, 4, 5, 0, 4, 1, 8, 6, 7, 9, 1, 2, 6, 2, 8, 8, 0, 8, 5, 7, 7, 8, 0, 5, 1, 2, 8, 9, 9, 3, 5, 8, 9, 5, 1, 8, 9, 3, 2, 7, 1, 1, 1, 3, 7, 5, 2, 9, 0, 8, 9, 9, 1, 0, 6, 2, 3, 9, 7, 4, 0, 3, 1, 7, 9, 4, 8, 4, 2, 4, 6, 4, 0, 5, 7, 0, 9, 4, 6, 3, 8, 1, 4, 9, 1, 6, 2, 1, 0, 5, 2, 1, 6, 1, 4, 5, 9, 1, 2, 6, 9, 7, 4, 9, 4
Offset: 0

Views

Author

Wolfdieter Lang, Mar 13 2015

Keywords

Comments

This is also the decimal expansion of 2*sin(Pi/14).
rho_2 := 2*cos(3*Pi/7) and rho(7) := 2*cos(Pi/7) (see A160389) are the two positive zeros of the minimal polynomial C(7, x) = x^3 - x^2 - 2*x + 1 of the algebraic number rho(7), the length ratio of the smaller diagonal and the side in the regular 7-gon (heptagon). See A187360 and a link to the arXiv paper given there, eq. (20) for the zeros of C(n, x). The other zero is negative, rho_3 := 2*cos(5*Pi/n). See -A255249.
Also the edge length of a regular 14-gon with unit circumradius. Such an m-gon is not constructible using a compass and a straightedge (see A004169). With an even m, in fact, it would be constructible only if the (m/2)-gon were constructible, which is not true in this case (see A272487). - Stanislav Sykora, May 01 2016

Examples

			0.445041867912628808577805128993589518932711137529089910623974031...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.

Crossrefs

Edge lengths of other nonconstructible n-gons: A272487 (n=7), A272488 (n=9), A272489 (n=11), A130880 (n=18), A272491 (n=19). - Stanislav Sykora, May 01 2016

Programs

  • Magma
    R:= RealField(120); 2*Cos(3*Pi(R)/7); // G. C. Greubel, Sep 04 2022
    
  • Mathematica
    RealDigits[N[2Cos[3Pi/7], 100]][[1]] (* Robert Price, May 01 2016 *)
  • PARI
    2*sin(Pi/14)
    
  • PARI
    polrootsreal(x^3 - x^2 - 2*x + 1)[2] \\ Charles R Greathouse IV, Oct 30 2023
    
  • SageMath
    numerical_approx(2*cos(3*pi/7), digits=120) # G. C. Greubel, Sep 04 2022

Formula

2*cos(3*Pi/7) = 2*sin(Pi/14) = 2*A232736 = 1/A231187 = 0.4450418679...
See A232736 for the decimal expansion of cos(3*Pi/7) = sin(Pi/14).
Equals i^(6/7) - i^(8/7). - Peter Luschny, Apr 04 2020
From Peter Bala, Oct 11 2021: (Start)
Equals 2 - (1 - z^3)*(1 - z^4)/((1 - z^2)*(1 - z^5)), where z = exp(2*Pi*i/7).
Equals 1 - A255240. (End)

Extensions

Offset corrected by Stanislav Sykora, May 01 2016

A073052 Decimal expansion of cos(Pi/7).

Original entry on oeis.org

9, 0, 0, 9, 6, 8, 8, 6, 7, 9, 0, 2, 4, 1, 9, 1, 2, 6, 2, 3, 6, 1, 0, 2, 3, 1, 9, 5, 0, 7, 4, 4, 5, 0, 5, 1, 1, 6, 5, 9, 1, 9, 1, 6, 2, 1, 3, 1, 8, 5, 7, 1, 5, 0, 0, 5, 3, 5, 6, 2, 4, 2, 3, 1, 9, 9, 4, 3, 2, 4, 2, 0, 4, 2, 7, 9, 3, 9, 9, 6, 5, 5, 0, 1, 3, 6, 1, 4, 5, 4, 7, 1, 8, 5, 1, 2, 4, 1, 5, 3, 1, 8, 3, 1, 0
Offset: 0

Views

Author

Robert G. Wilson v, Aug 15 2002

Keywords

Comments

Cubic number with denominator 2 and minimal polynomial 8*x^3 - 4*x^2 - 4*x + 1. - Charles R Greathouse IV, May 13 2019

Examples

			Cos(Pi/7) = 0.90096886790241912623610231950744505116139...
		

Crossrefs

Cf. A232736 (cos(3*Pi/7)).

Programs

  • Magma
    R:= RealField(120); Cos(Pi(R)/7); // G. C. Greubel, Sep 04 2022
    
  • Mathematica
    RealDigits[ Cos[Pi/7], 10, 105] [[1]]
  • PARI
    cos(Pi/7) \\ Charles R Greathouse IV, May 13 2019
    
  • SageMath
    numerical_approx(cos(pi/7), digits=120) # G. C. Greubel, Sep 04 2022

Formula

Equals Hypergeometric2F1([5/7, 2/7], [1/2], 3/4)/2 . - R. J. Mathar, Oct 27 2008
Equals (1/6)*(1 + (7*(-1 +3*sqrt(3)*I)/2)^(1/3) + (-7*(1 +3*sqrt(3)*I)/2)^(1/3)). - G. C. Greubel, Sep 04 2022

A232735 Decimal expansion of the real part of I^(1/7), or cos(Pi/14).

Original entry on oeis.org

9, 7, 4, 9, 2, 7, 9, 1, 2, 1, 8, 1, 8, 2, 3, 6, 0, 7, 0, 1, 8, 1, 3, 1, 6, 8, 2, 9, 9, 3, 9, 3, 1, 2, 1, 7, 2, 3, 2, 7, 8, 5, 8, 0, 0, 6, 1, 9, 9, 9, 7, 4, 3, 7, 6, 4, 8, 0, 7, 9, 5, 7, 5, 0, 8, 7, 6, 4, 5, 9, 3, 1, 6, 3, 4, 4, 0, 3, 7, 9, 3, 7, 0, 0, 1, 1, 2, 4, 5, 8, 1, 2, 0, 7, 3, 6, 9, 2, 5, 1, 6, 4, 0, 1, 4
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding imaginary part is in A232736.
Root of the equation -7 + 56*x^2 - 112*x^4 + 64*x^6 = 0. - Vaclav Kotesovec, Apr 04 2021

Examples

			0.974927912181823607018131682993931217232785800619997437648...
		

Crossrefs

Cf. A232736 (imaginary part), A010503 (real(I^(1/2))), A010527 (real(I^(1/3))), A144981 (real(I^(1/4))), A019881 (real(I^(1/5))), A019884 (real(I^(1/6))), A232737 (real(I^(1/8))), A019889 (real(I^(1/9))), A019890 (real(I^(1/10))).

Programs

  • Magma
    R:= RealField(100); Cos(Pi(R)/14); // G. C. Greubel, Sep 19 2022
    
  • Mathematica
    RealDigits[Cos[Pi/14],10,120][[1]] (* Harvey P. Dale, Dec 15 2018 *)
  • SageMath
    numerical_approx(cos(pi/14), digits=120) # G. C. Greubel, Sep 19 2022

Formula

2*this^2 -1 = A073052. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/14,1/14;1/2;1) . - R. J. Mathar, Aug 31 2025

A280533 Decimal expansion of 14*sin(Pi/14).

Original entry on oeis.org

3, 1, 1, 5, 2, 9, 3, 0, 7, 5, 3, 8, 8, 4, 0, 1, 6, 6, 0, 0, 4, 4, 6, 3, 5, 9, 0, 2, 9, 5, 5, 1, 2, 6, 6, 3, 2, 5, 2, 8, 9, 7, 7, 9, 6, 2, 7, 0, 3, 6, 2, 9, 3, 7, 4, 3, 6, 7, 8, 1, 8, 2, 2, 2, 5, 6, 3, 8, 9, 7, 2, 4, 8, 3, 9, 9, 6, 6, 2, 4, 6, 7, 0, 4, 4, 1, 3, 4, 7, 3, 6, 5, 1, 3, 0, 2, 1, 3, 8, 8, 8, 8, 2, 4, 5
Offset: 1

Views

Author

Rick L. Shepherd, Jan 04 2017

Keywords

Comments

Decimal expansion of the ratio of the perimeter of a regular 7-gon (heptagon) to its diameter (largest diagonal).

Examples

			3.115293075388401660044635902955126632528977962703629374367818222563897248...
		

Crossrefs

Cf. For other n-gons: A010466 (n=4), 10*A019827 (n=5, 10), A280585 (n=8), A280633 (n=9), A280725 (n=11), A280819 (n=12).
Cf. A232736.

Programs

  • Mathematica
    RealDigits[14*Sin[Pi/14], 10, 129][[1]] (* G. C. Greubel, Sep 20 2022 *)
  • PARI
    14*sin(Pi/14)
    
  • SageMath
    numerical_approx(14*sin(pi/14), digits=127) # G. C. Greubel, Sep 20 2022

Formula

Equals 14*A232736.

A232738 Decimal expansion of the imaginary part of I^(1/8), or sin(Pi/16).

Original entry on oeis.org

1, 9, 5, 0, 9, 0, 3, 2, 2, 0, 1, 6, 1, 2, 8, 2, 6, 7, 8, 4, 8, 2, 8, 4, 8, 6, 8, 4, 7, 7, 0, 2, 2, 2, 4, 0, 9, 2, 7, 6, 9, 1, 6, 1, 7, 7, 5, 1, 9, 5, 4, 8, 0, 7, 7, 5, 4, 5, 0, 2, 0, 8, 9, 4, 9, 4, 7, 6, 3, 3, 1, 8, 7, 8, 5, 9, 2, 4, 5, 8, 0, 2, 2, 5, 3, 2, 5, 3, 0, 9, 2, 3, 4, 0, 9, 0, 3, 8, 1, 7, 3, 0, 9, 9, 2
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding real part is in A232737.

Examples

			0.195090322016128267848284868477022240927691617751954807754502...
		

Crossrefs

Cf. A232737 (real part), A010503 (imag(I^(1/2))), A182168 (imag(I^(1/4))), A019827 (imag(I^(1/5))), A019824 (imag(I^(1/6))), A232736 (imag(I^(1/7))), A019819 (imag(I^(1/9))), A019818 (imag(I^(1/10))).

Programs

Formula

Equals (1/2) * sqrt(2-sqrt(2+sqrt(2))). - Seiichi Manyama, Apr 04 2021
This^2 + A232737^2 = 1.
Smallest positive of the 8 real-valued roots of 128*x^8-256*x^6+160*x^4-32*x^2+1=0.

A323601 Decimal expansion of sin(Pi/7).

Original entry on oeis.org

4, 3, 3, 8, 8, 3, 7, 3, 9, 1, 1, 7, 5, 5, 8, 1, 2, 0, 4, 7, 5, 7, 6, 8, 3, 3, 2, 8, 4, 8, 3, 5, 8, 7, 5, 4, 6, 0, 9, 9, 9, 0, 7, 2, 7, 7, 8, 7, 4, 5, 9, 8, 7, 6, 4, 4, 4, 5, 4, 7, 3, 0, 3, 5, 3, 2, 2, 0, 3, 2, 5, 1, 6, 5, 3, 1, 9, 8, 4, 2, 1, 5, 2, 0, 7, 8, 4, 0, 2, 1, 7, 7, 4, 4, 5, 6, 1, 0, 2, 0, 8, 8, 7, 4, 4, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 19 2019

Keywords

Examples

			0.43388373911755812047576833284835875460999072778745987644454730353220325...
		

Crossrefs

Cf. A019829 (sin(Pi/9)), A232736 (sin(Pi/14)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Sin(Pi(R)/7); // G. C. Greubel, Feb 08 2019
    
  • Mathematica
    RealDigits[Sin[Pi/7], 10, 120][[1]]
  • PARI
    default(realprecision, 100); sin(Pi/7) \\ G. C. Greubel, Feb 08 2019
    
  • PARI
    polrootsreal(64*x^6-112*x^4+56*x^2-7)[4] \\ Charles R Greathouse IV, Feb 05 2025
    
  • Sage
    numerical_approx(sin(pi/7), digits=100) # G. C. Greubel, Feb 08 2019

Formula

Root of the equation 64*x^6 - 112*x^4 + 56*x^2 - 7 = 0. (Other +- A232735 and +- 0.7818314... = +- cos(3*Pi/14))
Equals sqrt((196 + 7*i*2^(2/3)*(21*i*sqrt(3) - 7)^(1/3)*(i + sqrt(3)) + i*2^(4/3)*(21*i*sqrt(3) - 7)^(2/3)*(2*i + sqrt(3)))/336), where i is the imaginary unit.
Equals cos(5*Pi/14).
From Gleb Koloskov, Jul 15 2021: (Start)
Positive root of the equation x^3 + sqrt(7)/2*x^2 - sqrt(7)/8 = 0.
Equals ((4*sqrt(7)*(13+3*sqrt(3)*i))^(1/3)+28*(4*sqrt(7)*(13+3*sqrt(3)*i))^(-1/3)-2*sqrt(7))/12, where i is the imaginary unit. (End)
Equals 1/A121598 = A272487/2. - Hugo Pfoertner, Dec 15 2024
This^2 + A073052^2=1. - R. J. Mathar, Aug 31 2025

A343059 Decimal expansion of tan(Pi/14).

Original entry on oeis.org

2, 2, 8, 2, 4, 3, 4, 7, 4, 3, 9, 0, 1, 4, 9, 9, 3, 8, 0, 7, 7, 6, 1, 1, 3, 6, 2, 0, 6, 1, 0, 1, 4, 7, 8, 2, 7, 3, 8, 7, 8, 1, 6, 8, 0, 9, 8, 0, 3, 5, 2, 6, 3, 7, 9, 7, 9, 6, 8, 8, 9, 1, 9, 6, 0, 3, 8, 2, 4, 8, 5, 5, 7, 1, 3, 8, 8, 1, 8, 7, 8, 9, 1, 4, 6, 9, 3, 8, 7, 0, 3, 7, 7, 1, 5, 5, 5, 6, 8, 2, 6, 0, 2, 7, 1, 5, 9, 7, 1, 7, 3, 5, 3, 4, 2, 5, 3, 8, 7
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Comments

Root of the equation -1 + 21*x^2 - 35*x^4 + 7*x^6 = 0. - Vaclav Kotesovec, Apr 04 2021

Examples

			0.228243474390149938077611362061014782...
		

Crossrefs

Cf. A232736 (sin(Pi/14)), A232735 (cos(Pi/14)).

Programs

  • Mathematica
    RealDigits[Tan[Pi/14], 10, 125][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    tan(Pi/14)
    
  • SageMath
    numerical_approx(tan(pi/14), digits=124) # G. C. Greubel, Sep 30 2022

A362922 Decimal expansion of cos(2*Pi/7) = sin(3*Pi/14) = A255249/2.

Original entry on oeis.org

6, 2, 3, 4, 8, 9, 8, 0, 1, 8, 5, 8, 7, 3, 3, 5, 3, 0, 5, 2, 5, 0, 0, 4, 8, 8, 4, 0, 0, 4, 2, 3, 9, 8, 1, 0, 6, 3, 2, 2, 7, 4, 7, 3, 0, 8, 9, 6, 4, 0, 2, 1, 0, 5, 3, 6, 5, 5, 4, 9, 4, 3, 9, 0, 9, 6, 8, 5, 3, 6, 5, 2, 4, 5, 6, 4, 8, 7, 2, 8, 4, 5, 7, 5, 9, 4, 2, 5, 0, 7, 3, 2, 6, 5, 8, 5
Offset: 0

Views

Author

N. J. A. Sloane, Jun 25 2023

Keywords

Comments

This number, negated, is a zero of the polynomial 8*x^3 - 4*x^2 - 4*x + 1 that arises in the dissection of a regular heptagon. The other two zeros are cos(Pi/7) (A073052) and sin(Pi/14) (A232736).
The old definition was: Decimal expansion of 1/(8*cos(Pi/7)*sin(Pi/14)).

Examples

			0.6234898018587335305250048840042398106322747308964021053655...
		

Crossrefs

Programs

  • Maple
    Digits := 110: evalf(((-1)^(2/7) - (-1)^(5/7))/2, Digits)*10^96:
    ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Jun 25 2023
  • Mathematica
    First@ RealDigits[1/(8*Cos[Pi/7]*Sin[Pi/14]), 10, 96] (* Michael De Vlieger, Jun 25 2023 *)

Formula

Equals 1/(4*cos(Pi/7)-2) = 1/(2*A160389-2). - Alois P. Heinz, Jun 25 2023
Equals (i^(4/7) - i^(10/7))/2. - Peter Luschny, Jun 26 2023

Extensions

Simpler definition from Alois P. Heinz, Jun 25 2023.

A343055 Decimal expansion of the imaginary part of i^(1/16), or sin(Pi/32).

Original entry on oeis.org

0, 9, 8, 0, 1, 7, 1, 4, 0, 3, 2, 9, 5, 6, 0, 6, 0, 1, 9, 9, 4, 1, 9, 5, 5, 6, 3, 8, 8, 8, 6, 4, 1, 8, 4, 5, 8, 6, 1, 1, 3, 6, 6, 7, 3, 1, 6, 7, 5, 0, 0, 5, 6, 7, 2, 5, 7, 2, 6, 4, 9, 7, 9, 8, 0, 9, 3, 8, 7, 3, 0, 2, 7, 8, 9, 0, 8, 7, 5, 3, 6, 8, 0, 7, 1, 1, 1, 0, 7, 7, 1, 4, 6, 3, 1, 8, 5, 5, 9, 5, 5, 4, 0, 7, 4, 2, 0, 6, 5, 2, 6, 4, 4, 4, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Comments

An algebraic number of degree 16 and denominator 2. - Charles R Greathouse IV, Jan 09 2022

Examples

			0.09801714032956060199419...
		

Crossrefs

sin(Pi/m): A010527 (m=3), A010503 (m=4), A019845 (m=5), A323601 (m=7), A182168 (m=8), A019829 (m=9), A019827 (m=10), A019824 (m=12), A232736 (m=14), A019821 (m=15), A232738 (m=16), A241243 (m=17), A019819 (m=18), A019818 (m=20), A343054 (m=24), A019815 (m=30), this sequence (m=32), A019814 (m=36).

Programs

  • Mathematica
    RealDigits[Sin[Pi/32], 10, 100, -1][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    imag(I^(1/16))
    
  • PARI
    sin(Pi/32)
    
  • PARI
    sqrt(2-sqrt(2+sqrt(2+sqrt(2))))/2
    
  • Sage
    numerical_approx(sin(pi/32), digits=123) # G. C. Greubel, Sep 30 2022

Formula

Equals (1/2) * sqrt(2-sqrt(2+sqrt(2+sqrt(2)))).
One of the 16 real roots of -128*x^2 +2688*x^4 -21504*x^6 +84480*x^8 +32768*x^16 -131072*x^14 +212992*x^12 -180224*x^10 +1 =0. - R. J. Mathar, Aug 29 2025
Showing 1-9 of 9 results.