A160389 Decimal expansion of 2*cos(Pi/7).
1, 8, 0, 1, 9, 3, 7, 7, 3, 5, 8, 0, 4, 8, 3, 8, 2, 5, 2, 4, 7, 2, 2, 0, 4, 6, 3, 9, 0, 1, 4, 8, 9, 0, 1, 0, 2, 3, 3, 1, 8, 3, 8, 3, 2, 4, 2, 6, 3, 7, 1, 4, 3, 0, 0, 1, 0, 7, 1, 2, 4, 8, 4, 6, 3, 9, 8, 8, 6, 4, 8, 4, 0, 8, 5, 5, 8, 7, 9, 9, 3, 1, 0, 0, 2, 7, 2, 2, 9, 0, 9, 4, 3, 7, 0, 2, 4, 8, 3, 0, 6, 3, 6, 6, 2
Offset: 1
Examples
1.801937735804838252472204639014890102331838324263714300107124846398864...
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- Simon Baker, Exceptional digit frequencies and expansions in non-integer bases, arXiv:1711.10397 [math.DS], 2017. See Theorem 1.1 p. 3.
- Sam Buss and Ryan Williams, Limits on alternation-trading proofs for time-space lower bounds, Electronic Colloquium on Computational Complexity 2011
- Wolfdieter Lang, The field Q(2cos(pi/n)), its Galois group and length ratios in the regular n-gon, arXiv:1210.1018 [math.GR], Oct 03 2012.
- Peter Steinbach, Golden Fields: A Case for the Heptagon, Mathematics Magazine, Vol. 70, No. 1, Feb. 1997.
- Ryan Williams, Time-space tradeoffs for counting NP solutions modulo integers, Computational Complexity 17 (2008), pp. 179-219.
- Index entries for algebraic numbers, degree 3
Crossrefs
Programs
-
Magma
R:= RealField(200); Reverse(Intseq(Floor(10^110*2*Cos(Pi(R)/7)))); // Marius A. Burtea, Nov 13 2019
-
Maple
evalf(2*cos(Pi/7), 100); # Wesley Ivan Hurt, Feb 01 2017
-
Mathematica
RealDigits[2 Cos[Pi/7], 10, 111][[1]] (* Robert G. Wilson v, Jun 11 2013 *)
-
PARI
default(realprecision, 20080); x=2*cos(Pi/7); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b160389.txt", n, " ", d));
Formula
Equals 2*A073052. - Michel Marcus, Nov 21 2013
Equals (Re((-(4*7)*(1 + 3*sqrt(3)*i))^(1/3)) + 1)/3, with the real part Re, and i = sqrt(-1). - Wolfdieter Lang, Feb 24 2015
Equals i^(2/7) - i^(12/7). - Peter Luschny, Apr 04 2020
From Peter Bala, Oct 20 2021: (Start)
Equals 2 - (1 - z)*(1 - z^6)/((1 - z^3)*(1 - z^4)), where z = exp(2*Pi*i/7).
The other two zeros of the minimal polynomial x^3 - x^2 - 2*x + 1 of 2*cos(Pi/7) are given by 2 - (1 - z^3)*(1 - z^4)/((1 - z^2)*(1 - z^5)) = 2*cos(3*Pi/7) = A255241 and 2 - (1 - z^2)*(1 - z^5)/((1 - z)*(1 - z^6)) = cos(5*Pi/7) = -A362922.
Equals Product_{n >= 0} (7*n+2)*(7*n+5)/((7*n+1)*(7*n+6)) = 1 + Product_{n >= 0} (7*n+2)*(7*n+5)/((7*n+3)*(7*n+4)) = 1/A255240.
The linear fractional mapping r -> 1/(1 - r) cyclically permutes the three zeros of the minimal polynomial x^3 - x^2 - 2*x + 1. The inverse mapping is r -> (r - 1)/r.
The quadratic mapping r -> 2 - r^2 also cyclically permutes the three zeros. The inverse mapping is r -> r^2 - r - 1. (End)
Equals i^(2/7) + i^(-2/7). - Gary W. Adamson, Feb 11 2022
From Amiram Eldar, Nov 22 2024: (Start)
Equals Product_{k>=1} (1 - (-1)^k/A047336(k)).
Equals 1 + cosec(3*Pi/14)/2 = 1 + Product_{k>=1} (1 + (-1)^k/A047341(k)). (End)
Equals sqrt(A116425). - Hugo Pfoertner, Nov 22 2024
Comments