A232736 Decimal expansion of sin(Pi/14), or the imaginary part of (-1)^(1/7).
2, 2, 2, 5, 2, 0, 9, 3, 3, 9, 5, 6, 3, 1, 4, 4, 0, 4, 2, 8, 8, 9, 0, 2, 5, 6, 4, 4, 9, 6, 7, 9, 4, 7, 5, 9, 4, 6, 6, 3, 5, 5, 5, 6, 8, 7, 6, 4, 5, 4, 4, 9, 5, 5, 3, 1, 1, 9, 8, 7, 0, 1, 5, 8, 9, 7, 4, 2, 1, 2, 3, 2, 0, 2, 8, 5, 4, 7, 3, 1, 9, 0, 7, 4, 5, 8, 1, 0, 5, 2, 6, 0, 8, 0, 7, 2, 9, 5, 6, 3, 4, 8, 7, 4, 7
Offset: 0
Examples
0.222520933956314404288902564496794759466355568764544955311987...
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..1000
- Index entries for algebraic numbers, degree 3.
Crossrefs
Programs
-
Magma
R:= RealField(120); Cos(3*Pi(R)/7); // G. C. Greubel, Sep 04 2022
-
Mathematica
RealDigits[Cos[3*Pi/7], 10, 120][[1]] (* G. C. Greubel, Sep 04 2022 *)
-
PARI
sin(Pi/14) \\ Charles R Greathouse IV, Feb 04 2025
-
PARI
polrootsreal(8*x^3-4*x^2-4*x+1)[2] \\ Charles R Greathouse IV, Feb 04 2025
-
SageMath
numerical_approx(cos(3*pi/7), digits=120) # G. C. Greubel, Sep 04 2022
Formula
Equals cos(3*Pi/7). - G. C. Greubel, Sep 04 2022
This^2 + A232735^2 = 1. - R. J. Mathar, Aug 31 2025
Comments