cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A232736 Decimal expansion of sin(Pi/14), or the imaginary part of (-1)^(1/7).

Original entry on oeis.org

2, 2, 2, 5, 2, 0, 9, 3, 3, 9, 5, 6, 3, 1, 4, 4, 0, 4, 2, 8, 8, 9, 0, 2, 5, 6, 4, 4, 9, 6, 7, 9, 4, 7, 5, 9, 4, 6, 6, 3, 5, 5, 5, 6, 8, 7, 6, 4, 5, 4, 4, 9, 5, 5, 3, 1, 1, 9, 8, 7, 0, 1, 5, 8, 9, 7, 4, 2, 1, 2, 3, 2, 0, 2, 8, 5, 4, 7, 3, 1, 9, 0, 7, 4, 5, 8, 1, 0, 5, 2, 6, 0, 8, 0, 7, 2, 9, 5, 6, 3, 4, 8, 7, 4, 7
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding real part is in A232735.
Root of the equation 1 - 4*x - 4*x^2 + 8*x^3 = 0. - Vaclav Kotesovec, Apr 04 2021
The other 2 roots are -A362922 and A073052. - R. J. Mathar, Aug 29 2025

Examples

			0.222520933956314404288902564496794759466355568764544955311987...
		

Crossrefs

Cf. A232735 (real part), A010503 (imag(I^(1/2))), A182168 (imag(I^(1/4))), A019827 (imag(I^(1/5))), A019824 (imag(I^(1/6))), A232738 (imag(I^(1/8))), A019819 (imag(I^(1/9))), A019818 (imag(I^(1/10))).
See also A323601.

Programs

Formula

Equals cos(3*Pi/7). - G. C. Greubel, Sep 04 2022
Equals 4*A073052^3 -3*A073052. - R. J. Mathar, Aug 29 2025
This^2 + A232735^2 = 1. - R. J. Mathar, Aug 31 2025

A232737 Decimal expansion of the real part of I^(1/8), or cos(Pi/16).

Original entry on oeis.org

9, 8, 0, 7, 8, 5, 2, 8, 0, 4, 0, 3, 2, 3, 0, 4, 4, 9, 1, 2, 6, 1, 8, 2, 2, 3, 6, 1, 3, 4, 2, 3, 9, 0, 3, 6, 9, 7, 3, 9, 3, 3, 7, 3, 0, 8, 9, 3, 3, 3, 6, 0, 9, 5, 0, 0, 2, 9, 1, 6, 0, 8, 8, 5, 4, 5, 3, 0, 6, 5, 1, 3, 5, 4, 9, 6, 0, 5, 0, 6, 3, 9, 1, 5, 0, 6, 4, 9, 8, 5, 8, 5, 3, 3, 0, 0, 7, 6, 3, 2, 5, 9, 8, 9, 4
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding imaginary part is in A232738.

Examples

			0.9807852804032304491261822361342390369739337308933360950029160885453...
		

Crossrefs

Cf. A232738 (imaginary part), A010503 (real(I^(1/2))), A010527 (real(I^(1/3))), A144981 (real(I^(1/4))), A019881 (real(I^(1/5))), A019884 (real(I^(1/6))), A232735 (real(I^(1/7))), A019889 (real(I^(1/9))), A019890 (real(I^(1/10))).

Programs

Formula

Equals (1/2) * sqrt(2+sqrt(2+sqrt(2))). - Seiichi Manyama, Apr 04 2021
Root of 128*x^8 -256*x^6 +160*x^4 -32*x^2 +1 = 0. - R. J. Mathar, Aug 29 2025
2*this^2 -1 = A144981. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/8,1/8;1/2;1/2). - R. J. Mathar, Aug 31 2025

A323601 Decimal expansion of sin(Pi/7).

Original entry on oeis.org

4, 3, 3, 8, 8, 3, 7, 3, 9, 1, 1, 7, 5, 5, 8, 1, 2, 0, 4, 7, 5, 7, 6, 8, 3, 3, 2, 8, 4, 8, 3, 5, 8, 7, 5, 4, 6, 0, 9, 9, 9, 0, 7, 2, 7, 7, 8, 7, 4, 5, 9, 8, 7, 6, 4, 4, 4, 5, 4, 7, 3, 0, 3, 5, 3, 2, 2, 0, 3, 2, 5, 1, 6, 5, 3, 1, 9, 8, 4, 2, 1, 5, 2, 0, 7, 8, 4, 0, 2, 1, 7, 7, 4, 4, 5, 6, 1, 0, 2, 0, 8, 8, 7, 4, 4, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 19 2019

Keywords

Examples

			0.43388373911755812047576833284835875460999072778745987644454730353220325...
		

Crossrefs

Cf. A019829 (sin(Pi/9)), A232736 (sin(Pi/14)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Sin(Pi(R)/7); // G. C. Greubel, Feb 08 2019
    
  • Mathematica
    RealDigits[Sin[Pi/7], 10, 120][[1]]
  • PARI
    default(realprecision, 100); sin(Pi/7) \\ G. C. Greubel, Feb 08 2019
    
  • PARI
    polrootsreal(64*x^6-112*x^4+56*x^2-7)[4] \\ Charles R Greathouse IV, Feb 05 2025
    
  • Sage
    numerical_approx(sin(pi/7), digits=100) # G. C. Greubel, Feb 08 2019

Formula

Root of the equation 64*x^6 - 112*x^4 + 56*x^2 - 7 = 0. (Other +- A232735 and +- 0.7818314... = +- cos(3*Pi/14))
Equals sqrt((196 + 7*i*2^(2/3)*(21*i*sqrt(3) - 7)^(1/3)*(i + sqrt(3)) + i*2^(4/3)*(21*i*sqrt(3) - 7)^(2/3)*(2*i + sqrt(3)))/336), where i is the imaginary unit.
Equals cos(5*Pi/14).
From Gleb Koloskov, Jul 15 2021: (Start)
Positive root of the equation x^3 + sqrt(7)/2*x^2 - sqrt(7)/8 = 0.
Equals ((4*sqrt(7)*(13+3*sqrt(3)*i))^(1/3)+28*(4*sqrt(7)*(13+3*sqrt(3)*i))^(-1/3)-2*sqrt(7))/12, where i is the imaginary unit. (End)
Equals 1/A121598 = A272487/2. - Hugo Pfoertner, Dec 15 2024
This^2 + A073052^2=1. - R. J. Mathar, Aug 31 2025

A343059 Decimal expansion of tan(Pi/14).

Original entry on oeis.org

2, 2, 8, 2, 4, 3, 4, 7, 4, 3, 9, 0, 1, 4, 9, 9, 3, 8, 0, 7, 7, 6, 1, 1, 3, 6, 2, 0, 6, 1, 0, 1, 4, 7, 8, 2, 7, 3, 8, 7, 8, 1, 6, 8, 0, 9, 8, 0, 3, 5, 2, 6, 3, 7, 9, 7, 9, 6, 8, 8, 9, 1, 9, 6, 0, 3, 8, 2, 4, 8, 5, 5, 7, 1, 3, 8, 8, 1, 8, 7, 8, 9, 1, 4, 6, 9, 3, 8, 7, 0, 3, 7, 7, 1, 5, 5, 5, 6, 8, 2, 6, 0, 2, 7, 1, 5, 9, 7, 1, 7, 3, 5, 3, 4, 2, 5, 3, 8, 7
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Comments

Root of the equation -1 + 21*x^2 - 35*x^4 + 7*x^6 = 0. - Vaclav Kotesovec, Apr 04 2021

Examples

			0.228243474390149938077611362061014782...
		

Crossrefs

Cf. A232736 (sin(Pi/14)), A232735 (cos(Pi/14)).

Programs

  • Mathematica
    RealDigits[Tan[Pi/14], 10, 125][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    tan(Pi/14)
    
  • SageMath
    numerical_approx(tan(pi/14), digits=124) # G. C. Greubel, Sep 30 2022

A343056 Decimal expansion of the real part of i^(1/16), or cos(Pi/32).

Original entry on oeis.org

9, 9, 5, 1, 8, 4, 7, 2, 6, 6, 7, 2, 1, 9, 6, 8, 8, 6, 2, 4, 4, 8, 3, 6, 9, 5, 3, 1, 0, 9, 4, 7, 9, 9, 2, 1, 5, 7, 5, 4, 7, 4, 8, 6, 8, 7, 2, 9, 8, 5, 7, 0, 6, 1, 8, 3, 3, 6, 1, 2, 9, 6, 5, 7, 8, 4, 8, 9, 0, 1, 6, 6, 8, 9, 4, 5, 8, 6, 5, 3, 7, 9, 7, 2, 5, 2, 9, 0, 8, 4, 2, 6, 9, 6, 4, 8, 3, 9, 0, 2, 8, 7, 7, 2, 4, 4, 9, 3, 1, 1, 8, 2, 9
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Examples

			0.9951847266721968862448369...
		

Crossrefs

cos(Pi/m): A010503 (m=4), A019863 (m=5), A010527 (m=6), A073052 (m=7), A144981 (m=8), A019879 (m=9), A019881 (m=10), A019884 (m=12), A232735 (m=14), A019887 (m=15), A232737 (m=16), A210649 (m=17), A019889 (m=18), A019890 (m=20), A144982 (m=24), A019893 (m=30). this sequence (m=32), A019894 (m=36).

Programs

  • Magma
    R:= RealField(127); Cos(Pi(R)/32); // G. C. Greubel, Sep 30 2022
    
  • Mathematica
    RealDigits[Cos[Pi/32], 10, 100][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    real(I^(1/16))
    
  • PARI
    cos(Pi/32)
    
  • PARI
    sqrt(2+sqrt(2+sqrt(2+sqrt(2))))/2
    
  • SageMath
    numerical_approx(cos(pi/32), digits=122) # G. C. Greubel, Sep 30 2022

Formula

Equals (1/2) * sqrt(2+sqrt(2+sqrt(2+sqrt(2)))).
Satisfies 32768*x^16 -131072*x^14 +212992*x^12 -180224*x^10 +84480*x^8 -21504*x^6 +2688*x^4 -128*x^2 +1 = 0. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/16,1/16;1/2;1/2). - R. J. Mathar, Aug 31 2025

A387448 Decimal expansion of cos(Pi/28).

Original entry on oeis.org

9, 9, 3, 7, 1, 2, 2, 0, 9, 8, 9, 3, 2, 4, 2, 5, 8, 3, 5, 3, 3, 1, 4, 8, 2, 4, 1, 9, 4, 7, 3, 7, 8, 6, 9, 7, 1, 5, 2, 6, 3, 5, 4, 9, 5, 7, 8, 2, 0, 7, 3, 2, 1, 4, 9, 2, 7, 7, 5, 6, 5, 0, 2, 1, 5, 9, 5, 1, 0, 3, 8, 0, 9, 6, 8, 8, 9, 0, 9, 4, 4, 6, 6, 9, 0, 9, 9, 5, 7, 6, 4, 8, 7, 2, 7, 0, 6, 4, 3, 8, 2, 2, 3, 5, 4, 3, 0, 0, 9, 0, 4, 5, 5, 3, 7, 6, 6, 8
Offset: 0

Views

Author

R. J. Mathar, Aug 29 2025

Keywords

Examples

			0.99371220989324258353...
		

Crossrefs

Cf. A132744.

Formula

Equals sin(13*Pi/28) = sqrt( (A232735+1)/2 ) = 2F1(-1/14,1/14;1/2;1/2).
Largest of the 12 real-valued roots of 4096*x^12 -12288*x^10 +13568*x^8 -6656*x^6 +1376*x^4 -96*x^2 +1 =0.
Showing 1-6 of 6 results.