cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A232735 Decimal expansion of the real part of I^(1/7), or cos(Pi/14).

Original entry on oeis.org

9, 7, 4, 9, 2, 7, 9, 1, 2, 1, 8, 1, 8, 2, 3, 6, 0, 7, 0, 1, 8, 1, 3, 1, 6, 8, 2, 9, 9, 3, 9, 3, 1, 2, 1, 7, 2, 3, 2, 7, 8, 5, 8, 0, 0, 6, 1, 9, 9, 9, 7, 4, 3, 7, 6, 4, 8, 0, 7, 9, 5, 7, 5, 0, 8, 7, 6, 4, 5, 9, 3, 1, 6, 3, 4, 4, 0, 3, 7, 9, 3, 7, 0, 0, 1, 1, 2, 4, 5, 8, 1, 2, 0, 7, 3, 6, 9, 2, 5, 1, 6, 4, 0, 1, 4
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding imaginary part is in A232736.
Root of the equation -7 + 56*x^2 - 112*x^4 + 64*x^6 = 0. - Vaclav Kotesovec, Apr 04 2021

Examples

			0.974927912181823607018131682993931217232785800619997437648...
		

Crossrefs

Cf. A232736 (imaginary part), A010503 (real(I^(1/2))), A010527 (real(I^(1/3))), A144981 (real(I^(1/4))), A019881 (real(I^(1/5))), A019884 (real(I^(1/6))), A232737 (real(I^(1/8))), A019889 (real(I^(1/9))), A019890 (real(I^(1/10))).

Programs

  • Magma
    R:= RealField(100); Cos(Pi(R)/14); // G. C. Greubel, Sep 19 2022
    
  • Mathematica
    RealDigits[Cos[Pi/14],10,120][[1]] (* Harvey P. Dale, Dec 15 2018 *)
  • SageMath
    numerical_approx(cos(pi/14), digits=120) # G. C. Greubel, Sep 19 2022

Formula

2*this^2 -1 = A073052. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/14,1/14;1/2;1) . - R. J. Mathar, Aug 31 2025

A232738 Decimal expansion of the imaginary part of I^(1/8), or sin(Pi/16).

Original entry on oeis.org

1, 9, 5, 0, 9, 0, 3, 2, 2, 0, 1, 6, 1, 2, 8, 2, 6, 7, 8, 4, 8, 2, 8, 4, 8, 6, 8, 4, 7, 7, 0, 2, 2, 2, 4, 0, 9, 2, 7, 6, 9, 1, 6, 1, 7, 7, 5, 1, 9, 5, 4, 8, 0, 7, 7, 5, 4, 5, 0, 2, 0, 8, 9, 4, 9, 4, 7, 6, 3, 3, 1, 8, 7, 8, 5, 9, 2, 4, 5, 8, 0, 2, 2, 5, 3, 2, 5, 3, 0, 9, 2, 3, 4, 0, 9, 0, 3, 8, 1, 7, 3, 0, 9, 9, 2
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding real part is in A232737.

Examples

			0.195090322016128267848284868477022240927691617751954807754502...
		

Crossrefs

Cf. A232737 (real part), A010503 (imag(I^(1/2))), A182168 (imag(I^(1/4))), A019827 (imag(I^(1/5))), A019824 (imag(I^(1/6))), A232736 (imag(I^(1/7))), A019819 (imag(I^(1/9))), A019818 (imag(I^(1/10))).

Programs

Formula

Equals (1/2) * sqrt(2-sqrt(2+sqrt(2))). - Seiichi Manyama, Apr 04 2021
This^2 + A232737^2 = 1.
Smallest positive of the 8 real-valued roots of 128*x^8-256*x^6+160*x^4-32*x^2+1=0.

A343056 Decimal expansion of the real part of i^(1/16), or cos(Pi/32).

Original entry on oeis.org

9, 9, 5, 1, 8, 4, 7, 2, 6, 6, 7, 2, 1, 9, 6, 8, 8, 6, 2, 4, 4, 8, 3, 6, 9, 5, 3, 1, 0, 9, 4, 7, 9, 9, 2, 1, 5, 7, 5, 4, 7, 4, 8, 6, 8, 7, 2, 9, 8, 5, 7, 0, 6, 1, 8, 3, 3, 6, 1, 2, 9, 6, 5, 7, 8, 4, 8, 9, 0, 1, 6, 6, 8, 9, 4, 5, 8, 6, 5, 3, 7, 9, 7, 2, 5, 2, 9, 0, 8, 4, 2, 6, 9, 6, 4, 8, 3, 9, 0, 2, 8, 7, 7, 2, 4, 4, 9, 3, 1, 1, 8, 2, 9
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Examples

			0.9951847266721968862448369...
		

Crossrefs

cos(Pi/m): A010503 (m=4), A019863 (m=5), A010527 (m=6), A073052 (m=7), A144981 (m=8), A019879 (m=9), A019881 (m=10), A019884 (m=12), A232735 (m=14), A019887 (m=15), A232737 (m=16), A210649 (m=17), A019889 (m=18), A019890 (m=20), A144982 (m=24), A019893 (m=30). this sequence (m=32), A019894 (m=36).

Programs

  • Magma
    R:= RealField(127); Cos(Pi(R)/32); // G. C. Greubel, Sep 30 2022
    
  • Mathematica
    RealDigits[Cos[Pi/32], 10, 100][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    real(I^(1/16))
    
  • PARI
    cos(Pi/32)
    
  • PARI
    sqrt(2+sqrt(2+sqrt(2+sqrt(2))))/2
    
  • SageMath
    numerical_approx(cos(pi/32), digits=122) # G. C. Greubel, Sep 30 2022

Formula

Equals (1/2) * sqrt(2+sqrt(2+sqrt(2+sqrt(2)))).
Satisfies 32768*x^16 -131072*x^14 +212992*x^12 -180224*x^10 +84480*x^8 -21504*x^6 +2688*x^4 -128*x^2 +1 = 0. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/16,1/16;1/2;1/2). - R. J. Mathar, Aug 31 2025

A343060 Decimal expansion of tan(Pi/16).

Original entry on oeis.org

1, 9, 8, 9, 1, 2, 3, 6, 7, 3, 7, 9, 6, 5, 8, 0, 0, 6, 9, 1, 1, 5, 9, 7, 6, 2, 2, 6, 4, 4, 6, 7, 6, 2, 2, 8, 5, 9, 7, 8, 5, 0, 5, 0, 1, 3, 2, 1, 5, 9, 0, 9, 8, 1, 9, 2, 1, 1, 1, 6, 9, 9, 5, 8, 2, 5, 4, 2, 9, 6, 0, 4, 4, 6, 0, 2, 7, 7, 0, 6, 3, 0, 5, 3, 3, 1, 9, 9, 0, 6, 0, 5, 7, 6, 1, 4, 7, 1, 3, 7, 5, 7, 7, 6, 0, 7, 8, 2, 6, 5, 6, 5, 7, 0, 5, 8
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Examples

			0.19891236737965800691159762264...
		

Crossrefs

Cf. A232738 (sin(Pi/16)), A232737 (cos(Pi/16)), A343057 (tan(Pi/32)).

Programs

  • Mathematica
    RealDigits[Tan[Pi/16], 10, 100][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    tan(Pi/16)
    
  • PARI
    sqrt((2-sqrt(2+sqrt(2)))/(2+sqrt(2+sqrt(2))))
    
  • PARI
    sqrt(4+2*sqrt(2))-sqrt(2)-1

Formula

Equals sqrt( (2-sqrt(2+sqrt(2)))/(2+sqrt(2+sqrt(2))) ).
Equals sqrt(4+2*sqrt(2))-sqrt(2)-1.
Showing 1-4 of 4 results.