cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A232736 Decimal expansion of sin(Pi/14), or the imaginary part of (-1)^(1/7).

Original entry on oeis.org

2, 2, 2, 5, 2, 0, 9, 3, 3, 9, 5, 6, 3, 1, 4, 4, 0, 4, 2, 8, 8, 9, 0, 2, 5, 6, 4, 4, 9, 6, 7, 9, 4, 7, 5, 9, 4, 6, 6, 3, 5, 5, 5, 6, 8, 7, 6, 4, 5, 4, 4, 9, 5, 5, 3, 1, 1, 9, 8, 7, 0, 1, 5, 8, 9, 7, 4, 2, 1, 2, 3, 2, 0, 2, 8, 5, 4, 7, 3, 1, 9, 0, 7, 4, 5, 8, 1, 0, 5, 2, 6, 0, 8, 0, 7, 2, 9, 5, 6, 3, 4, 8, 7, 4, 7
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding real part is in A232735.
Root of the equation 1 - 4*x - 4*x^2 + 8*x^3 = 0. - Vaclav Kotesovec, Apr 04 2021
The other 2 roots are -A362922 and A073052. - R. J. Mathar, Aug 29 2025

Examples

			0.222520933956314404288902564496794759466355568764544955311987...
		

Crossrefs

Cf. A232735 (real part), A010503 (imag(I^(1/2))), A182168 (imag(I^(1/4))), A019827 (imag(I^(1/5))), A019824 (imag(I^(1/6))), A232738 (imag(I^(1/8))), A019819 (imag(I^(1/9))), A019818 (imag(I^(1/10))).
See also A323601.

Programs

Formula

Equals cos(3*Pi/7). - G. C. Greubel, Sep 04 2022
Equals 4*A073052^3 -3*A073052. - R. J. Mathar, Aug 29 2025
This^2 + A232735^2 = 1. - R. J. Mathar, Aug 31 2025

A232737 Decimal expansion of the real part of I^(1/8), or cos(Pi/16).

Original entry on oeis.org

9, 8, 0, 7, 8, 5, 2, 8, 0, 4, 0, 3, 2, 3, 0, 4, 4, 9, 1, 2, 6, 1, 8, 2, 2, 3, 6, 1, 3, 4, 2, 3, 9, 0, 3, 6, 9, 7, 3, 9, 3, 3, 7, 3, 0, 8, 9, 3, 3, 3, 6, 0, 9, 5, 0, 0, 2, 9, 1, 6, 0, 8, 8, 5, 4, 5, 3, 0, 6, 5, 1, 3, 5, 4, 9, 6, 0, 5, 0, 6, 3, 9, 1, 5, 0, 6, 4, 9, 8, 5, 8, 5, 3, 3, 0, 0, 7, 6, 3, 2, 5, 9, 8, 9, 4
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding imaginary part is in A232738.

Examples

			0.9807852804032304491261822361342390369739337308933360950029160885453...
		

Crossrefs

Cf. A232738 (imaginary part), A010503 (real(I^(1/2))), A010527 (real(I^(1/3))), A144981 (real(I^(1/4))), A019881 (real(I^(1/5))), A019884 (real(I^(1/6))), A232735 (real(I^(1/7))), A019889 (real(I^(1/9))), A019890 (real(I^(1/10))).

Programs

Formula

Equals (1/2) * sqrt(2+sqrt(2+sqrt(2))). - Seiichi Manyama, Apr 04 2021
Root of 128*x^8 -256*x^6 +160*x^4 -32*x^2 +1 = 0. - R. J. Mathar, Aug 29 2025
2*this^2 -1 = A144981. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/8,1/8;1/2;1/2). - R. J. Mathar, Aug 31 2025

A272535 Decimal expansion of the edge length of a regular 16-gon with unit circumradius.

Original entry on oeis.org

3, 9, 0, 1, 8, 0, 6, 4, 4, 0, 3, 2, 2, 5, 6, 5, 3, 5, 6, 9, 6, 5, 6, 9, 7, 3, 6, 9, 5, 4, 0, 4, 4, 4, 8, 1, 8, 5, 5, 3, 8, 3, 2, 3, 5, 5, 0, 3, 9, 0, 9, 6, 1, 5, 5, 0, 9, 0, 0, 4, 1, 7, 8, 9, 8, 9, 5, 2, 6, 6, 3, 7, 5, 7, 1, 8, 4, 9, 1, 6, 0, 4, 5, 0, 6, 5, 0, 6, 1, 8, 4, 6, 8, 1, 8, 0, 7, 6, 3, 4, 6, 1, 9, 8, 4
Offset: 0

Views

Author

Stanislav Sykora, May 02 2016

Keywords

Comments

Like all m-gons with m equal to a power of 2 (see A003401 and A000079), this is a constructible number.

Examples

			0.390180644032256535696569736954044481855383235503909615509004...
		

Crossrefs

Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A228787 (17), A272536 (20).

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/16], 100]][[1]] (* Robert Price, May 02 2016*)
  • PARI
    2*sin(Pi/16)

Formula

Equals 2*sin(Pi/m) for m=16, 2*A232738. Equals also sqrt(2-sqrt(2+sqrt(2))).

A343055 Decimal expansion of the imaginary part of i^(1/16), or sin(Pi/32).

Original entry on oeis.org

0, 9, 8, 0, 1, 7, 1, 4, 0, 3, 2, 9, 5, 6, 0, 6, 0, 1, 9, 9, 4, 1, 9, 5, 5, 6, 3, 8, 8, 8, 6, 4, 1, 8, 4, 5, 8, 6, 1, 1, 3, 6, 6, 7, 3, 1, 6, 7, 5, 0, 0, 5, 6, 7, 2, 5, 7, 2, 6, 4, 9, 7, 9, 8, 0, 9, 3, 8, 7, 3, 0, 2, 7, 8, 9, 0, 8, 7, 5, 3, 6, 8, 0, 7, 1, 1, 1, 0, 7, 7, 1, 4, 6, 3, 1, 8, 5, 5, 9, 5, 5, 4, 0, 7, 4, 2, 0, 6, 5, 2, 6, 4, 4, 4, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Comments

An algebraic number of degree 16 and denominator 2. - Charles R Greathouse IV, Jan 09 2022

Examples

			0.09801714032956060199419...
		

Crossrefs

sin(Pi/m): A010527 (m=3), A010503 (m=4), A019845 (m=5), A323601 (m=7), A182168 (m=8), A019829 (m=9), A019827 (m=10), A019824 (m=12), A232736 (m=14), A019821 (m=15), A232738 (m=16), A241243 (m=17), A019819 (m=18), A019818 (m=20), A343054 (m=24), A019815 (m=30), this sequence (m=32), A019814 (m=36).

Programs

  • Mathematica
    RealDigits[Sin[Pi/32], 10, 100, -1][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    imag(I^(1/16))
    
  • PARI
    sin(Pi/32)
    
  • PARI
    sqrt(2-sqrt(2+sqrt(2+sqrt(2))))/2
    
  • Sage
    numerical_approx(sin(pi/32), digits=123) # G. C. Greubel, Sep 30 2022

Formula

Equals (1/2) * sqrt(2-sqrt(2+sqrt(2+sqrt(2)))).
One of the 16 real roots of -128*x^2 +2688*x^4 -21504*x^6 +84480*x^8 +32768*x^16 -131072*x^14 +212992*x^12 -180224*x^10 +1 =0. - R. J. Mathar, Aug 29 2025

A343060 Decimal expansion of tan(Pi/16).

Original entry on oeis.org

1, 9, 8, 9, 1, 2, 3, 6, 7, 3, 7, 9, 6, 5, 8, 0, 0, 6, 9, 1, 1, 5, 9, 7, 6, 2, 2, 6, 4, 4, 6, 7, 6, 2, 2, 8, 5, 9, 7, 8, 5, 0, 5, 0, 1, 3, 2, 1, 5, 9, 0, 9, 8, 1, 9, 2, 1, 1, 1, 6, 9, 9, 5, 8, 2, 5, 4, 2, 9, 6, 0, 4, 4, 6, 0, 2, 7, 7, 0, 6, 3, 0, 5, 3, 3, 1, 9, 9, 0, 6, 0, 5, 7, 6, 1, 4, 7, 1, 3, 7, 5, 7, 7, 6, 0, 7, 8, 2, 6, 5, 6, 5, 7, 0, 5, 8
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Examples

			0.19891236737965800691159762264...
		

Crossrefs

Cf. A232738 (sin(Pi/16)), A232737 (cos(Pi/16)), A343057 (tan(Pi/32)).

Programs

  • Mathematica
    RealDigits[Tan[Pi/16], 10, 100][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    tan(Pi/16)
    
  • PARI
    sqrt((2-sqrt(2+sqrt(2)))/(2+sqrt(2+sqrt(2))))
    
  • PARI
    sqrt(4+2*sqrt(2))-sqrt(2)-1

Formula

Equals sqrt( (2-sqrt(2+sqrt(2)))/(2+sqrt(2+sqrt(2))) ).
Equals sqrt(4+2*sqrt(2))-sqrt(2)-1.
Showing 1-5 of 5 results.