A019829 Decimal expansion of sine of 20 degrees.
3, 4, 2, 0, 2, 0, 1, 4, 3, 3, 2, 5, 6, 6, 8, 7, 3, 3, 0, 4, 4, 0, 9, 9, 6, 1, 4, 6, 8, 2, 2, 5, 9, 5, 8, 0, 7, 6, 3, 0, 8, 3, 3, 6, 7, 5, 1, 4, 1, 6, 0, 6, 2, 8, 4, 6, 5, 0, 4, 8, 4, 9, 7, 6, 8, 4, 7, 1, 4, 7, 6, 3, 7, 0, 2, 0, 7, 7, 5, 9, 9, 5, 6, 4, 1, 9, 0, 1, 8, 2, 3, 3, 8, 5, 2, 5, 5, 4, 7
Offset: 0
Examples
0.34202014332566873304409961468225958076308336751416062846504849768471476...
Links
Crossrefs
Cf. A323601.
Programs
-
Mathematica
RealDigits[ Sin[Pi/9], 10, 111][[1]] (* Robert G. Wilson v *)
-
PARI
/* for x = 20 degrees, sin(9x) = 0 */ /* so sin(x) is a zero of this polynomial */ sin_9(x)=9*x-120*x^3+432*x^5-576*x^7+256*x^9 x=34;y=100;print(3);print(4); for(digits=1, 110, {d=0;y=y*10;while(sin_9((10*x+d)/y) > 0, d++); d--; /* while loop overshoots correct digit */ print(d); x=10*x+d}) \\ Michael B. Porter, Jan 27 2010
-
PARI
sin(Pi/9) \\ Charles R Greathouse IV, Feb 04 2025
Formula
Equals cos(7*Pi/18) = 2F1(13/12,-1/12;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
Root of the equation 64*x^6 - 96*x^4 + 36*x^2 - 3 = 0. - Vaclav Kotesovec, Jan 19 2019 (other A019849, A019889)
Equals sqrt(8 - 2^(4/3)*(1 + i*sqrt(3))^(2/3) + i*2^(2/3)*(1 + i*sqrt(3))^(1/3)*(i + sqrt(3)))/4, where i is the imaginary unit. - Vaclav Kotesovec, Jan 19 2019
This^2 + A019879^2=1. - R. J. Mathar, Aug 31 2025
Comments