cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A178817 Decimal expansion of the area of the regular 7-gon (heptagon) of edge length 1.

Original entry on oeis.org

3, 6, 3, 3, 9, 1, 2, 4, 4, 4, 0, 0, 1, 5, 8, 8, 9, 9, 2, 5, 3, 6, 1, 9, 3, 0, 0, 7, 6, 0, 0, 2, 2, 0, 5, 7, 8, 7, 3, 5, 0, 1, 0, 3, 6, 1, 5, 9, 5, 4, 4, 4, 9, 1, 7, 1, 4, 5, 9, 8, 0, 4, 0, 9, 5, 1, 0, 2, 9, 9, 8, 5, 2, 3, 6, 3, 0, 4, 6, 0, 0, 5, 5, 6, 2, 7, 3, 0, 7, 1, 5, 2, 9, 5, 8, 1, 0, 8, 9, 4, 3, 7, 1, 0, 4
Offset: 1

Views

Author

Keywords

Examples

			3.63391244400158899253619300760022057873501036159544491714598040951029...
		

Crossrefs

Cf. Areas of other regular polygons: A120011, A102771, A104956, A090488, A256853, A178816, A256854, A178809.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 7*Cot(Pi(R)/7)/4; // G. C. Greubel, Jan 22 2019
    
  • Maple
    evalf[120]((7/4)*cot(Pi/7)); # Muniru A Asiru, Jan 22 2019
  • Mathematica
    RealDigits[7*Cot[Pi/7]/4, 10, 100][[1]]
  • PARI
    p=7; a=(p/4)*cotan(Pi/p)  \\ Set realprecision in excess. - Stanislav Sykora, Apr 12 2015
    
  • Sage
    numerical_approx(7*cot(pi/7)/4, digits=100) # G. C. Greubel, Jan 22 2019

Formula

Equals (7/4) * cot(Pi/7).
From Michal Paulovic, Dec 27 2022: (Start)
Equals 7 / (4 * tan(Pi/7)) = 7 / (4 * A343058).
Equals sqrt(7/3 * (35 + 2 * 196^(1/3) * ((13 - 3 * sqrt(3) * i)^(1/3) + (13 + 3 * sqrt(3) * i)^(1/3)))) / 4.
Equals sqrt(7/4) * sqrt(35/12 + (637/54 - sqrt(-2401/108))^(1/3) + (637/54 + sqrt(-2401/108))^(1/3)).
(End)
A root of the polynomial 4096*x^6 - 62720*x^4 + 115248*x^2 - 16807. - Joerg Arndt, Jan 02 2023

A374971 Decimal expansion of the apothem (inradius) of a regular heptagon with unit side length.

Original entry on oeis.org

1, 0, 3, 8, 2, 6, 0, 6, 9, 8, 2, 8, 6, 1, 6, 8, 2, 8, 3, 5, 8, 1, 7, 6, 9, 4, 3, 0, 7, 4, 2, 9, 2, 0, 1, 6, 5, 3, 5, 2, 8, 6, 0, 1, 0, 3, 3, 1, 2, 9, 8, 4, 2, 6, 2, 0, 4, 1, 7, 0, 8, 6, 8, 8, 4, 3, 1, 5, 1, 4, 2, 4, 3, 5, 3, 2, 2, 9, 8, 8, 5, 8, 7, 3, 2, 2, 0, 8, 7, 7
Offset: 1

Views

Author

Paolo Xausa, Jul 26 2024

Keywords

Examples

			1.0382606982861682835817694307429201653528601033...
		

Crossrefs

Cf. A374957 (circumradius), A374972 (sagitta), A178817 (area).
Cf. apothem of other polygons with unit side length: A020769 (triangle), A020761 (square), A375067 (pentagon), A010527 (hexagon), A174968 (octagon), A375152 (9-gon), A179452 (10-gon), A375191 (11-gon), A375193 (12-gon).

Programs

Formula

Equals cot(Pi/7)/2 = A178818/2.
Equals 1/(2*tan(Pi/7)) = 1/(2*A343058).
Equals A374957*cos(Pi/7) = A374957*A073052.
Equals A374957 - A374972.
Largest of the 6 real-valued roots of 448*x^6 -560*x^4 +84*x^2 -1 =0. - R. J. Mathar, Aug 29 2025

A381153 Decimal expansion of the isoperimetric quotient of a regular heptagon.

Original entry on oeis.org

9, 3, 1, 9, 4, 0, 6, 2, 3, 4, 9, 9, 0, 9, 5, 7, 4, 5, 9, 5, 2, 2, 2, 6, 3, 0, 0, 8, 9, 4, 2, 2, 7, 5, 4, 5, 7, 4, 5, 2, 8, 5, 2, 5, 1, 5, 4, 7, 1, 5, 3, 1, 5, 6, 1, 2, 7, 3, 2, 0, 2, 2, 6, 8, 8, 6, 4, 5, 2, 5, 3, 9, 4, 8, 0, 5, 4, 7, 8, 5, 6, 9, 3, 7, 7, 2, 8, 6, 7, 1
Offset: 0

Views

Author

Paolo Xausa, Feb 15 2025

Keywords

Comments

For the definition of isoperimetric quotient, see A381152.

Examples

			0.93194062349909574595222630089422754574528525154715...
		

Crossrefs

Cf. isoperimetric quotient of other regular polygons: A073010 (triangle), A003881 (square), A381152 (pentagon), A093766 (hexagon), A196522 (octagon), A381154 (9-gon), A381155 (10-gon), A381156 (11-gon), A381157 (12-gon).

Programs

  • Mathematica
    First[RealDigits[Pi/(7*Tan[Pi/7]), 10, 100]]

Formula

Equals Pi/(7*tan(Pi/7)) = Pi/(7*A343058).
Equals (4/49)*Pi*A178817.

A343057 Decimal expansion of tan(Pi/32).

Original entry on oeis.org

0, 9, 8, 4, 9, 1, 4, 0, 3, 3, 5, 7, 1, 6, 4, 2, 5, 3, 0, 7, 7, 1, 9, 7, 5, 2, 1, 2, 9, 1, 3, 2, 7, 4, 3, 2, 2, 9, 3, 0, 5, 2, 4, 5, 0, 6, 9, 9, 2, 0, 2, 6, 9, 5, 9, 8, 0, 9, 1, 6, 1, 2, 1, 1, 3, 4, 4, 1, 9, 4, 3, 8, 7, 3, 0, 8, 1, 2, 9, 7, 2, 2, 5, 6, 4, 8, 5, 2, 1, 4, 1, 8, 0, 3, 7, 3, 6, 0, 0, 1, 3, 7, 0, 6, 7, 1, 6, 9, 7, 7, 9, 1, 7, 6, 5
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Examples

			0.098491403357164253077197...
		

Crossrefs

Cf. A343055 (sin(Pi/32)), A343056 (cos(Pi/32)).
tan(Pi/m): A002194 (m=3), A019934 (m=5), A020760 (m=6), A343058 (m=7), A188582 (m=8), A019918 (m=9), A019916 (m=10), A019913 (m=12), A343059 (m=14), A019910 (m=15), A343060 (m=16), A343061 (m=17), A019908 (m=18), A019907 (m=20), A343062 (m=24), A019904 (m=30), A343057 (m=32), A019903 (m=36).

Programs

  • Magma
    R:= RealField(125); Tan(Pi(R)/32); // G. C. Greubel, Sep 30 2022
    
  • Mathematica
    RealDigits[Tan[Pi/32], 10, 120, -1][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    tan(Pi/32)
    
  • PARI
    sqrt((2-sqrt(2+sqrt(2+sqrt(2))))/(2+sqrt(2+sqrt(2+sqrt(2)))))
    
  • SageMath
    numerical_approx(tan(pi/32), digits=125) # G. C. Greubel, Sep 30 2022

Formula

Equals sqrt( (2-sqrt(2+sqrt(2+sqrt(2))))/(2+sqrt(2+sqrt(2+sqrt(2)))) ).
Showing 1-4 of 4 results.