A178817 Decimal expansion of the area of the regular 7-gon (heptagon) of edge length 1.
3, 6, 3, 3, 9, 1, 2, 4, 4, 4, 0, 0, 1, 5, 8, 8, 9, 9, 2, 5, 3, 6, 1, 9, 3, 0, 0, 7, 6, 0, 0, 2, 2, 0, 5, 7, 8, 7, 3, 5, 0, 1, 0, 3, 6, 1, 5, 9, 5, 4, 4, 4, 9, 1, 7, 1, 4, 5, 9, 8, 0, 4, 0, 9, 5, 1, 0, 2, 9, 9, 8, 5, 2, 3, 6, 3, 0, 4, 6, 0, 0, 5, 5, 6, 2, 7, 3, 0, 7, 1, 5, 2, 9, 5, 8, 1, 0, 8, 9, 4, 3, 7, 1, 0, 4
Offset: 1
Examples
3.63391244400158899253619300760022057873501036159544491714598040951029...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Wikipedia, Heptagon
- Wikipedia, Regular polygon
- Index entries for algebraic numbers, degree 6
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:=RealField(); 7*Cot(Pi(R)/7)/4; // G. C. Greubel, Jan 22 2019
-
Maple
evalf[120]((7/4)*cot(Pi/7)); # Muniru A Asiru, Jan 22 2019
-
Mathematica
RealDigits[7*Cot[Pi/7]/4, 10, 100][[1]]
-
PARI
p=7; a=(p/4)*cotan(Pi/p) \\ Set realprecision in excess. - Stanislav Sykora, Apr 12 2015
-
Sage
numerical_approx(7*cot(pi/7)/4, digits=100) # G. C. Greubel, Jan 22 2019
Formula
Equals (7/4) * cot(Pi/7).
From Michal Paulovic, Dec 27 2022: (Start)
Equals 7 / (4 * tan(Pi/7)) = 7 / (4 * A343058).
Equals sqrt(7/3 * (35 + 2 * 196^(1/3) * ((13 - 3 * sqrt(3) * i)^(1/3) + (13 + 3 * sqrt(3) * i)^(1/3)))) / 4.
Equals sqrt(7/4) * sqrt(35/12 + (637/54 - sqrt(-2401/108))^(1/3) + (637/54 + sqrt(-2401/108))^(1/3)).
(End)
A root of the polynomial 4096*x^6 - 62720*x^4 + 115248*x^2 - 16807. - Joerg Arndt, Jan 02 2023
Comments