cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A160389 Decimal expansion of 2*cos(Pi/7).

Original entry on oeis.org

1, 8, 0, 1, 9, 3, 7, 7, 3, 5, 8, 0, 4, 8, 3, 8, 2, 5, 2, 4, 7, 2, 2, 0, 4, 6, 3, 9, 0, 1, 4, 8, 9, 0, 1, 0, 2, 3, 3, 1, 8, 3, 8, 3, 2, 4, 2, 6, 3, 7, 1, 4, 3, 0, 0, 1, 0, 7, 1, 2, 4, 8, 4, 6, 3, 9, 8, 8, 6, 4, 8, 4, 0, 8, 5, 5, 8, 7, 9, 9, 3, 1, 0, 0, 2, 7, 2, 2, 9, 0, 9, 4, 3, 7, 0, 2, 4, 8, 3, 0, 6, 3, 6, 6, 2
Offset: 1

Views

Author

Harry J. Smith, May 31 2009

Keywords

Comments

Arises in the approximation of 14-fold quasipatterns by 14 Fourier modes.
Let DTS(n^c) denote the set of languages accepted by a deterministic Turing machine with space n^(o(1)) and time n^(c+o(1)), and let SAT denote the Boolean satisfiability problem. Then (1) SAT is not in DTS(n^c) for any c < 2*cos(Pi/7), and (2) the Williams inference rules cannot prove that SAT is not in DTS(n^c) for any c >= 2*cos(Pi/7). These results also apply to the Boolean satisfiability problem mod m where m is in A085971 except possibly for one prime. - Charles R Greathouse IV, Jul 19 2012
rho(7):= 2*cos(Pi/7) is the length ratio (smallest diagonal)/side in the regular 7-gon (heptagon). The algebraic number field Q(rho(7)) of degree 3 is fundamental for the 7-gon. See A187360 for the minimal polynomial C(7, x) of rho(7). The other (larger) diagonal/side ratio in the heptagon is sigma(7) = -1 + rho(7)^2, approx. 2.2469796. (see the decimal expansion in A231187). sigma(7) is the limit of a(n+1)/a(n) for n->infinity for the sequences like A006054 and A077998 which can be considered as analogs of the Fibonacci sequence in the pentagon. Thus sigma(7) plays in the heptagon the role of the golden section in the pentagon. See the P. Steinbach reference. - Wolfdieter Lang, Nov 21 2013
An algebraic integer of degree 3 with minimal polynomial x^3 - x^2 - 2x + 1. - Charles R Greathouse IV, Nov 12 2014
The other two solutions of the minimal polynomial of rho(7) = 2*cos(Pi/7) are 2*cos(3*Pi/7) and 2*cos(5*Pi/7). See eq. (20) of the W. Lang link. - Wolfdieter Lang, Feb 11 2015
The constant is the square root of 3.24697... (cf. A116425). It is the fifth-longest diagonal in the regular 14-gon with unit radius, which equals 2*sin(5*Pi/14). - Gary W. Adamson, Feb 14 2022

Examples

			1.801937735804838252472204639014890102331838324263714300107124846398864...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.

Crossrefs

Cf. A039921 (continued fraction).
Cf. A003558 (the constant is cyclic with period 3, for N = 7).

Programs

  • Magma
    R:= RealField(200); Reverse(Intseq(Floor(10^110*2*Cos(Pi(R)/7)))); // Marius A. Burtea, Nov 13 2019
  • Maple
    evalf(2*cos(Pi/7), 100); # Wesley Ivan Hurt, Feb 01 2017
  • Mathematica
    RealDigits[2 Cos[Pi/7], 10, 111][[1]] (* Robert G. Wilson v, Jun 11 2013 *)
  • PARI
    default(realprecision, 20080); x=2*cos(Pi/7); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b160389.txt", n, " ", d));
    

Formula

Equals 2*A073052. - Michel Marcus, Nov 21 2013
Equals (Re((-(4*7)*(1 + 3*sqrt(3)*i))^(1/3)) + 1)/3, with the real part Re, and i = sqrt(-1). - Wolfdieter Lang, Feb 24 2015
Equals i^(2/7) - i^(12/7). - Peter Luschny, Apr 04 2020
From Peter Bala, Oct 20 2021: (Start)
Equals 2 - (1 - z)*(1 - z^6)/((1 - z^3)*(1 - z^4)), where z = exp(2*Pi*i/7).
The other two zeros of the minimal polynomial x^3 - x^2 - 2*x + 1 of 2*cos(Pi/7) are given by 2 - (1 - z^3)*(1 - z^4)/((1 - z^2)*(1 - z^5)) = 2*cos(3*Pi/7) = A255241 and 2 - (1 - z^2)*(1 - z^5)/((1 - z)*(1 - z^6)) = cos(5*Pi/7) = -A362922.
Equals Product_{n >= 0} (7*n+2)*(7*n+5)/((7*n+1)*(7*n+6)) = 1 + Product_{n >= 0} (7*n+2)*(7*n+5)/((7*n+3)*(7*n+4)) = 1/A255240.
The linear fractional mapping r -> 1/(1 - r) cyclically permutes the three zeros of the minimal polynomial x^3 - x^2 - 2*x + 1. The inverse mapping is r -> (r - 1)/r.
The quadratic mapping r -> 2 - r^2 also cyclically permutes the three zeros. The inverse mapping is r -> r^2 - r - 1. (End)
Equals i^(2/7) + i^(-2/7). - Gary W. Adamson, Feb 11 2022
From Amiram Eldar, Nov 22 2024: (Start)
Equals Product_{k>=1} (1 - (-1)^k/A047336(k)).
Equals 1 + cosec(3*Pi/14)/2 = 1 + Product_{k>=1} (1 + (-1)^k/A047341(k)). (End)
Equals sqrt(A116425). - Hugo Pfoertner, Nov 22 2024

A255249 Decimal expansion of -2*cos(5*Pi/7).

Original entry on oeis.org

1, 2, 4, 6, 9, 7, 9, 6, 0, 3, 7, 1, 7, 4, 6, 7, 0, 6, 1, 0, 5, 0, 0, 0, 9, 7, 6, 8, 0, 0, 8, 4, 7, 9, 6, 2, 1, 2, 6, 4, 5, 4, 9, 4, 6, 1, 7, 9, 2, 8, 0, 4, 2, 1, 0, 7, 3, 1, 0, 9, 8, 8, 7, 8, 1, 9, 3, 7, 0, 7, 3, 0, 4, 9, 1, 2, 9, 7, 4, 5, 6, 9, 1, 5, 1, 8, 8, 5, 0, 1, 4, 6, 5, 3, 1, 7, 0
Offset: 1

Views

Author

Wolfdieter Lang, Mar 13 2015

Keywords

Comments

rho_3 := +2*cos(5*Pi/7) is the negative zero of the minimal polynomial C(7, x) = x^3 - x^2 - 2*x + 1 of the algebraic number rho(7) = 2*cos(Pi/7), the length ratio of the smaller diagonal and the side in the regular 7-gon (heptagon). See A187360 and a link to the arXiv paper given there, eq. (20) for the zeros of C(n, x). The positive zeros are rho(7) and rho_2 = 2*cos(3*Pi/7) shown in A160389 and A255241.
Essentially the same as A231187 and A116425. - R. J. Mathar, Mar 14 2015

Examples

			1.2469796037174670610500097680084796212645494617928042107310988781937073049...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 207.

Crossrefs

Cf. A047385, A160389, A187360, A255241, A330002, A330003 (Beatty sequences), A362922.

Programs

  • Mathematica
    r = x /. FindRoot[1/x + 1/(x+1)^2 == 1, {x, 2, 10}, WorkingPrecision -> 210]
    RealDigits[r][[1]]
    Plot[1/x + 1/(x+1)^2, {x, 1, 2}] (* Clark Kimberling, Jan 04 2020 *)
  • PARI
    polrootsreal(x^3 + x^2 - 2*x - 1)[3] \\ Charles R Greathouse IV, Oct 30 2023

Formula

2*cos(5*Pi/7) = - 2*sin(3*Pi/14) = -1.246979603...
Solution of x^3 + x^2 - 2 x - 1 = 0; +1.246979603... - Clark Kimberling, Jan 04 2020
Equals i^(4/7) - i^(10/7). - Peter Luschny, Apr 04 2020
From Peter Bala, Oct 20 2021: (Start)
Equals z + z^6, where z = exp(2*Pi*i/7), so this constant is one of the three cubic Gaussian periods for the modulus 7. The other periods are - A255241 and - A160389.
Equals (1 - z^2)*(1 - z^5)/((1 - z)*(1 - z^6)) - 2.
Equals Product_{n >= 0} (7*n+3)*(7*n+4)/((7*n+2)*(7*n+5)) = A231187 - 1. (End)
Equals Product_{k>=1} (1 - (-1)^k/A047385(k)). - Amiram Eldar, Nov 22 2024
Equals 1/(A160389-1) = 2*A362922. - Hugo Pfoertner, Nov 22 2024

A232736 Decimal expansion of sin(Pi/14), or the imaginary part of (-1)^(1/7).

Original entry on oeis.org

2, 2, 2, 5, 2, 0, 9, 3, 3, 9, 5, 6, 3, 1, 4, 4, 0, 4, 2, 8, 8, 9, 0, 2, 5, 6, 4, 4, 9, 6, 7, 9, 4, 7, 5, 9, 4, 6, 6, 3, 5, 5, 5, 6, 8, 7, 6, 4, 5, 4, 4, 9, 5, 5, 3, 1, 1, 9, 8, 7, 0, 1, 5, 8, 9, 7, 4, 2, 1, 2, 3, 2, 0, 2, 8, 5, 4, 7, 3, 1, 9, 0, 7, 4, 5, 8, 1, 0, 5, 2, 6, 0, 8, 0, 7, 2, 9, 5, 6, 3, 4, 8, 7, 4, 7
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding real part is in A232735.
Root of the equation 1 - 4*x - 4*x^2 + 8*x^3 = 0. - Vaclav Kotesovec, Apr 04 2021
The other 2 roots are -A362922 and A073052. - R. J. Mathar, Aug 29 2025

Examples

			0.222520933956314404288902564496794759466355568764544955311987...
		

Crossrefs

Cf. A232735 (real part), A010503 (imag(I^(1/2))), A182168 (imag(I^(1/4))), A019827 (imag(I^(1/5))), A019824 (imag(I^(1/6))), A232738 (imag(I^(1/8))), A019819 (imag(I^(1/9))), A019818 (imag(I^(1/10))).
See also A323601.

Programs

Formula

Equals cos(3*Pi/7). - G. C. Greubel, Sep 04 2022
Equals 4*A073052^3 -3*A073052. - R. J. Mathar, Aug 29 2025
This^2 + A232735^2 = 1. - R. J. Mathar, Aug 31 2025
Showing 1-3 of 3 results.