cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A280725 Decimal expansion of 22*sin(Pi/22).

Original entry on oeis.org

3, 1, 3, 0, 9, 2, 6, 4, 4, 2, 0, 1, 2, 2, 7, 3, 0, 8, 9, 7, 6, 3, 4, 3, 8, 7, 0, 9, 5, 6, 0, 1, 3, 2, 7, 1, 3, 4, 0, 3, 1, 2, 9, 9, 4, 4, 7, 7, 1, 6, 5, 5, 2, 2, 5, 1, 9, 7, 8, 2, 1, 3, 0, 4, 2, 9, 8, 1, 2, 0, 7, 7, 1, 2, 1, 9, 2, 2, 1, 4, 8, 5, 8, 3, 9, 2, 1, 4, 7, 1, 6, 7, 2, 0, 7, 9, 7, 6, 1, 7, 0, 3, 6, 3, 3
Offset: 1

Views

Author

Rick L. Shepherd, Jan 07 2017

Keywords

Comments

The ratio of the perimeter of a regular 11-gon (hendecagon) to its diameter (largest diagonal).
Also least positive root of x^5 - 11x^4 - 484x^3 + 3993x^2 + 43923x - 161051.

Examples

			3.130926442012273089763438709560132713403129944771655225197821304298120771...
		

Crossrefs

Cf. For other n-gons: A010466 (n=4), 10*A019827 (n=5, 10), A280533 (n=7), A280585 (n=8), A280633 (n=9), A280819 (n=12).

Programs

  • Maple
    evalf(22*sin(Pi/22),100); # Wesley Ivan Hurt, Feb 01 2017
  • Mathematica
    RealDigits[22*Sin[Pi/22], 10, 120][[1]] (* Amiram Eldar, Jun 26 2023 *)
  • PARI
    22*sin(Pi/22)

A280585 Decimal expansion of 8*sin(Pi/8).

Original entry on oeis.org

3, 0, 6, 1, 4, 6, 7, 4, 5, 8, 9, 2, 0, 7, 1, 8, 1, 7, 3, 8, 2, 7, 6, 7, 9, 8, 7, 2, 2, 4, 3, 1, 9, 0, 9, 3, 4, 0, 9, 0, 7, 5, 6, 4, 9, 9, 8, 8, 5, 0, 1, 6, 3, 3, 1, 4, 7, 0, 4, 0, 5, 0, 8, 5, 0, 2, 0, 3, 6, 8, 2, 7, 1, 6, 8, 0, 7, 1, 7, 5, 3, 7, 8, 9, 6, 1, 1, 0, 2, 8, 2, 7, 3, 8, 2, 6, 8, 3, 7, 7, 1, 8, 7, 3, 9
Offset: 1

Views

Author

Rick L. Shepherd, Jan 05 2017

Keywords

Comments

Decimal expansion of the ratio of the perimeter of a regular 8-gon (octagon) to its diameter (largest diagonal).

Examples

			3.061467458920718173827679872243190934090756499885016331470405085020368271...
		

Crossrefs

Cf. For other n-gons: A010466 (n=4), 10*A019827 (n=5, 10), A280533 (n=7), A280633 (n=9), A280725 (n=11), A280819 (n=12).
Cf. A182168.

Programs

  • Maple
    evalf(8*sin(Pi/8),100); # Wesley Ivan Hurt, Feb 01 2017
  • Mathematica
    RealDigits[8*Sin[Pi/8], 10, 120][[1]] (* Amiram Eldar, Jun 26 2023 *)
  • PARI
    8*sin(Pi/8)

Formula

Equals 8*A182168.

A280633 Decimal expansion of 18*sin(Pi/18).

Original entry on oeis.org

3, 1, 2, 5, 6, 6, 7, 1, 9, 8, 0, 0, 4, 7, 4, 6, 2, 7, 9, 3, 3, 0, 8, 9, 9, 2, 8, 1, 8, 4, 7, 6, 6, 6, 3, 2, 8, 0, 0, 6, 7, 6, 2, 1, 8, 9, 3, 1, 3, 2, 4, 8, 9, 7, 0, 2, 5, 2, 3, 4, 4, 8, 0, 6, 3, 7, 7, 1, 8, 4, 7, 9, 8, 5, 0, 2, 2, 6, 5, 2, 3, 7, 5, 8, 7, 2, 9, 9, 0, 3, 6, 8, 3, 3, 1, 9, 2, 3, 3, 2, 2, 1, 5, 2, 6
Offset: 1

Views

Author

Rick L. Shepherd, Jan 06 2017

Keywords

Comments

The ratio of the perimeter of a regular 9-gon (nonagon) to its diameter (largest diagonal).
Also least positive root of x^3 - 243x + 729.

Examples

			3.125667198004746279330899281847666328006762189313248970252344806377184798...
		

Crossrefs

Cf. For other n-gons: A010466 (n=4), 10*A019827 (n=5, 10), A280533 (n=7),A280585 (n=8), A280725(n=11), A280819 (n=12).

Programs

  • Maple
    evalf(18*sin(Pi/18),100); # Wesley Ivan Hurt, Feb 01 2017
  • Mathematica
    RealDigits[18*Sin[Pi/18],10,120][[1]] (* Harvey P. Dale, Dec 02 2018 *)
  • PARI
    18*sin(Pi/18)

Formula

A280819 Decimal expansion of 12*sin(Pi/12).

Original entry on oeis.org

3, 1, 0, 5, 8, 2, 8, 5, 4, 1, 2, 3, 0, 2, 4, 9, 1, 4, 8, 1, 8, 6, 7, 8, 6, 0, 5, 1, 4, 8, 8, 5, 7, 9, 9, 4, 0, 1, 8, 8, 8, 2, 6, 8, 1, 5, 8, 3, 9, 1, 6, 6, 1, 6, 5, 7, 6, 8, 0, 3, 8, 4, 8, 7, 7, 8, 0, 6, 8, 3, 6, 9, 6, 9, 8, 5, 6, 2, 3, 9, 6, 3, 0, 6, 8, 4, 1, 5, 6, 9, 6, 3, 3, 0, 9, 9, 5, 9, 8, 6, 2, 5, 0, 7, 4
Offset: 1

Views

Author

Rick L. Shepherd, Jan 08 2017

Keywords

Comments

The ratio of the perimeter of a regular 12-gon (dodecagon) to its diameter (greatest diagonal).
A quartic integer: the least positive root of x^4 - 144x^2 + 1296.

Examples

			3.105828541230249148186786051488579940188826815839166165768038487780683696...
		

Crossrefs

Cf. For other n-gons: A010466 (n=4), 10*A019827 (n=5, 10), A280533 (n=7), A280585 (n=8), A280633 (n=9), A280725 (n=11).

Programs

Formula

A280926 Least k such that the first n digits of the decimal expansion of the ratio of the perimeter of a regular k-gon to its diameter match those of Pi.

Original entry on oeis.org

5, 7, 29, 47, 119, 699, 1407, 4911, 18971, 46803, 119951, 363209, 1276197, 3722389, 19973297, 73605289, 183273481, 390720475, 1671075265, 4541314567, 22107473795, 44810965685, 172567099183, 617945607281, 1835952288687, 3938674815741, 19847928172101
Offset: 1

Views

Author

Rick L. Shepherd, Jan 10 2017

Keywords

Comments

By definition, the diameter of a regular k-gon is the length of its longest diagonal.
All terms are odd; see Formula section. - Jon E. Schoenfield, Mar 29 2021

Examples

			An equilateral triangle (k=3) has no diagonals, and a square (k=4) has perimeter/diameter = sqrt(8) = 2.828427..., but a regular pentagon (k=5) has perimeter/diameter = (5/2)*(sqrt(5) - 1) = 3.090169..., whose first digit (3) matches that of Pi = 3.141592..., so a(1)=5. - _Jon E. Schoenfield_, Mar 31 2021
This ratio for a regular 7-gon (heptagon) is 3.115293... (A280533), where 3.1 equals the first two digits of Pi's decimal expansion. Because the first two digits are not 3.1 for k < 7, a(2) = 7.
		

Crossrefs

Formula

a(n) = 1 + 2*floor((1/2)*(1 + sqrt((Pi^3/24)/(Pi-floor(Pi*10^(n-1))/10^(n-1))))). - Jon E. Schoenfield, Mar 28 2021

Extensions

a(13)-a(27) from Jon E. Schoenfield, Mar 28 2021
Showing 1-5 of 5 results.