cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A280533 Decimal expansion of 14*sin(Pi/14).

Original entry on oeis.org

3, 1, 1, 5, 2, 9, 3, 0, 7, 5, 3, 8, 8, 4, 0, 1, 6, 6, 0, 0, 4, 4, 6, 3, 5, 9, 0, 2, 9, 5, 5, 1, 2, 6, 6, 3, 2, 5, 2, 8, 9, 7, 7, 9, 6, 2, 7, 0, 3, 6, 2, 9, 3, 7, 4, 3, 6, 7, 8, 1, 8, 2, 2, 2, 5, 6, 3, 8, 9, 7, 2, 4, 8, 3, 9, 9, 6, 6, 2, 4, 6, 7, 0, 4, 4, 1, 3, 4, 7, 3, 6, 5, 1, 3, 0, 2, 1, 3, 8, 8, 8, 8, 2, 4, 5
Offset: 1

Views

Author

Rick L. Shepherd, Jan 04 2017

Keywords

Comments

Decimal expansion of the ratio of the perimeter of a regular 7-gon (heptagon) to its diameter (largest diagonal).

Examples

			3.115293075388401660044635902955126632528977962703629374367818222563897248...
		

Crossrefs

Cf. For other n-gons: A010466 (n=4), 10*A019827 (n=5, 10), A280585 (n=8), A280633 (n=9), A280725 (n=11), A280819 (n=12).
Cf. A232736.

Programs

  • Mathematica
    RealDigits[14*Sin[Pi/14], 10, 129][[1]] (* G. C. Greubel, Sep 20 2022 *)
  • PARI
    14*sin(Pi/14)
    
  • SageMath
    numerical_approx(14*sin(pi/14), digits=127) # G. C. Greubel, Sep 20 2022

Formula

Equals 14*A232736.

A280585 Decimal expansion of 8*sin(Pi/8).

Original entry on oeis.org

3, 0, 6, 1, 4, 6, 7, 4, 5, 8, 9, 2, 0, 7, 1, 8, 1, 7, 3, 8, 2, 7, 6, 7, 9, 8, 7, 2, 2, 4, 3, 1, 9, 0, 9, 3, 4, 0, 9, 0, 7, 5, 6, 4, 9, 9, 8, 8, 5, 0, 1, 6, 3, 3, 1, 4, 7, 0, 4, 0, 5, 0, 8, 5, 0, 2, 0, 3, 6, 8, 2, 7, 1, 6, 8, 0, 7, 1, 7, 5, 3, 7, 8, 9, 6, 1, 1, 0, 2, 8, 2, 7, 3, 8, 2, 6, 8, 3, 7, 7, 1, 8, 7, 3, 9
Offset: 1

Views

Author

Rick L. Shepherd, Jan 05 2017

Keywords

Comments

Decimal expansion of the ratio of the perimeter of a regular 8-gon (octagon) to its diameter (largest diagonal).

Examples

			3.061467458920718173827679872243190934090756499885016331470405085020368271...
		

Crossrefs

Cf. For other n-gons: A010466 (n=4), 10*A019827 (n=5, 10), A280533 (n=7), A280633 (n=9), A280725 (n=11), A280819 (n=12).
Cf. A182168.

Programs

  • Maple
    evalf(8*sin(Pi/8),100); # Wesley Ivan Hurt, Feb 01 2017
  • Mathematica
    RealDigits[8*Sin[Pi/8], 10, 120][[1]] (* Amiram Eldar, Jun 26 2023 *)
  • PARI
    8*sin(Pi/8)

Formula

Equals 8*A182168.

A280633 Decimal expansion of 18*sin(Pi/18).

Original entry on oeis.org

3, 1, 2, 5, 6, 6, 7, 1, 9, 8, 0, 0, 4, 7, 4, 6, 2, 7, 9, 3, 3, 0, 8, 9, 9, 2, 8, 1, 8, 4, 7, 6, 6, 6, 3, 2, 8, 0, 0, 6, 7, 6, 2, 1, 8, 9, 3, 1, 3, 2, 4, 8, 9, 7, 0, 2, 5, 2, 3, 4, 4, 8, 0, 6, 3, 7, 7, 1, 8, 4, 7, 9, 8, 5, 0, 2, 2, 6, 5, 2, 3, 7, 5, 8, 7, 2, 9, 9, 0, 3, 6, 8, 3, 3, 1, 9, 2, 3, 3, 2, 2, 1, 5, 2, 6
Offset: 1

Views

Author

Rick L. Shepherd, Jan 06 2017

Keywords

Comments

The ratio of the perimeter of a regular 9-gon (nonagon) to its diameter (largest diagonal).
Also least positive root of x^3 - 243x + 729.

Examples

			3.125667198004746279330899281847666328006762189313248970252344806377184798...
		

Crossrefs

Cf. For other n-gons: A010466 (n=4), 10*A019827 (n=5, 10), A280533 (n=7),A280585 (n=8), A280725(n=11), A280819 (n=12).

Programs

  • Maple
    evalf(18*sin(Pi/18),100); # Wesley Ivan Hurt, Feb 01 2017
  • Mathematica
    RealDigits[18*Sin[Pi/18],10,120][[1]] (* Harvey P. Dale, Dec 02 2018 *)
  • PARI
    18*sin(Pi/18)

Formula

A280819 Decimal expansion of 12*sin(Pi/12).

Original entry on oeis.org

3, 1, 0, 5, 8, 2, 8, 5, 4, 1, 2, 3, 0, 2, 4, 9, 1, 4, 8, 1, 8, 6, 7, 8, 6, 0, 5, 1, 4, 8, 8, 5, 7, 9, 9, 4, 0, 1, 8, 8, 8, 2, 6, 8, 1, 5, 8, 3, 9, 1, 6, 6, 1, 6, 5, 7, 6, 8, 0, 3, 8, 4, 8, 7, 7, 8, 0, 6, 8, 3, 6, 9, 6, 9, 8, 5, 6, 2, 3, 9, 6, 3, 0, 6, 8, 4, 1, 5, 6, 9, 6, 3, 3, 0, 9, 9, 5, 9, 8, 6, 2, 5, 0, 7, 4
Offset: 1

Views

Author

Rick L. Shepherd, Jan 08 2017

Keywords

Comments

The ratio of the perimeter of a regular 12-gon (dodecagon) to its diameter (greatest diagonal).
A quartic integer: the least positive root of x^4 - 144x^2 + 1296.

Examples

			3.105828541230249148186786051488579940188826815839166165768038487780683696...
		

Crossrefs

Cf. For other n-gons: A010466 (n=4), 10*A019827 (n=5, 10), A280533 (n=7), A280585 (n=8), A280633 (n=9), A280725 (n=11).

Programs

Formula

A284726 a(n) = (1/4) * smallest multiple of 4 missing from [A280864(1), ..., A280864(n-1)].

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 20, 20, 20, 21, 21, 21, 22, 22
Offset: 1

Views

Author

N. J. A. Sloane, Apr 06 2017

Keywords

Comments

For k >= 1, n >= 1, let B_k(n) = smallest multiple of k missing from [A280864(1), ..., A280864(n-1)]. Sequence gives values of B_4(n)/4.
The analogous sequences B_k(n) for the EKG sequence A064413 were important for the analysis of that sequence, so they may also be useful for studying A280864.

Examples

			The initial terms of A280864 are 1,2,4,3,6,8,... The smallest missing multiple of 3 in [1,2,4,3,6] is 8, so a(6) = 8/4 = 2.
		

Crossrefs

Programs

  • Maple
    mex := proc(L)
    local k;
    for k from 1 do
    if not k in L then
    return k;
    end if;
    end do:
    end proc:
    read b280864;
    k:=4; a:=[1,1]; ML:=[]; B:=1;
    for n from 2 to 120 do
    t:=b280864[n];
    if (t mod k) = 0 then
    ML:=[op(ML),t/k];
    B:=mex(ML);
    a:=[op(a),B];
    else
    a:=[op(a),B];
    fi;
    od:
    a;
  • Mathematica
    terms = 84; rad[n_] := Times @@ FactorInteger[n][[All, 1]];
    A280864 = Reap[present = 0; p = 1; pp = 1; Do[forbidden = GCD[p, pp]; mandatory = p/forbidden; a = mandatory; While[BitGet[present, a] > 0 || GCD[forbidden, a] > 1, a += mandatory]; Sow[a]; present += 2^a; pp = p; p = rad[a], terms]][[2, 1]];
    Clear[a]; a[1] = 1;
    a[n_] := a[n] = For[b = 4 a[n - 1], True, b += 4, If[FreeQ[A280864[[1 ;; n - 1]], b], Return[b/4]]];
    Array[a, terms] (* Jean-François Alcover, Nov 26 2017, after Rémy Sigrist's program for A280864 *)
Showing 1-5 of 5 results.