cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A010503 Decimal expansion of 1/sqrt(2).

Original entry on oeis.org

7, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9, 3, 7, 6, 7, 1, 6, 3, 8, 2, 0, 7, 8, 6, 3, 6, 7, 5, 0, 6
Offset: 0

Views

Author

Keywords

Comments

The decimal expansion of sqrt(50) = 5*sqrt(2) = 7.0710678118654752440... gives essentially the same sequence.
Also real and imaginary part of the square root of the imaginary unit. - Alonso del Arte, Jan 07 2011
1/sqrt(2) = (1/2)^(1/2) = (1/4)^(1/4) (see the comments in A072364).
If a triangle has sides whose lengths form a harmonic progression in the ratio 1 : 1/(1 + d) : 1/(1 + 2d) then the triangle inequality condition requires that d be in the range -1 + 1/sqrt(2) < d < 1/sqrt(2). - Frank M Jackson, Oct 11 2011
Let s_2(n) be the sum of the base-2 digits of n and epsilon(n) = (-1)^s_2(n), the Thue-Morse sequence A010060, then Product_{n >= 0} ((2*n + 1)/(2*n + 2))^epsilon(n) = 1/sqrt(2). - Jonathan Vos Post, Jun 03 2012
The square root of 1/2 and thus it follows from the Pythagorean theorem that it is the sine of 45 degrees (and the cosine of 45 degrees). - Alonso del Arte, Sep 24 2012
Circumscribed sphere radius for a regular octahedron with unit edges. In electrical engineering, ratio of effective amplitude to peak amplitude of an alternating current/voltage. - Stanislav Sykora, Feb 10 2014
Radius of midsphere (tangent to edges) in a cube with unit edges. - Stanislav Sykora, Mar 27 2014
Positive zero of the Hermite polynomial of degree 2. - A.H.M. Smeets, Jun 02 2025

Examples

			0.7071067811865475...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Sections 1.1, 7.5.2, and 8.2, pp. 1-3, 468, 484, 487.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. A073084 (infinite tetration limit).
Platonic solids circumradii: A010527 (cube), A019881 (icosahedron), A179296 (dodecahedron), A187110 (tetrahedron).
Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A019863 (icosahedron), A239798 (dodecahedron).

Programs

  • Magma
    1/Sqrt(2); // Vincenzo Librandi, Feb 21 2016
  • Maple
    Digits:=100; evalf(1/sqrt(2)); Wesley Ivan Hurt, Mar 27 2014
  • Mathematica
    N[ 1/Sqrt[2], 200]
    RealDigits[1/Sqrt[2],10,120][[1]] (* Harvey P. Dale, Mar 25 2019 *)
  • PARI
    default(realprecision, 20080); x=10*(1/sqrt(2)); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b010503.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009
    

Formula

1/sqrt(2) = cos(Pi/4) = sqrt(2)/2. - Eric Desbiaux, Nov 05 2008
a(n) = 9 - A268682(n). As constants, this sequence is 1 - A268682. - Philippe Deléham, Feb 21 2016
From Amiram Eldar, Jun 29 2020: (Start)
Equals sin(Pi/4) = cos(Pi/4).
Equals Integral_{x=0..Pi/4} cos(x) dx. (End)
Equals (1/2)*A019884 + A019824 * A010527 = A019851 * A019896 + A019812 * A019857. - R. J. Mathar, Jan 27 2021
Equals hypergeom([-1/2, -3/4], [5/4], -1). - Peter Bala, Mar 02 2022
Limit_{n->oo} (sqrt(T(n+1)) - sqrt(T(n))) = 1/sqrt(2), where T(n) = n(n+1)/2 = A000217(n) is the triangular numbers. - Jules Beauchamp, Sep 18 2022
Equals Product_{k>=0} ((2*k+1)/(2*k+2))^((-1)^A000120(k)) (Woods, 1978). - Amiram Eldar, Feb 04 2024
From Stefano Spezia, Oct 15 2024: (Start)
Equals 1 + Sum_{k>=1} (-1)^k*binomial(2*k,k)/2^(2*k) [Newton].
Equal Product_{k>=1} 1 - 1/(4*(2*k - 1)^2). (End)
Equals Product_{k>=0} (1 - (-1)^k/(6*k+3)). - Amiram Eldar, Nov 22 2024

Extensions

More terms from Harry J. Smith, Jun 02 2009

A019863 Decimal expansion of sin(3*Pi/10) (sine of 54 degrees, or cosine of 36 degrees).

Original entry on oeis.org

8, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8
Offset: 0

Views

Author

Keywords

Comments

Midsphere radius of regular icosahedron with unit edges.
Also half of the golden ratio (A001622). - Stanislav Sykora, Jan 30 2014
Andris Ambainis (see Aaronson link) observes that combining the results of Barak-Hardt-Haviv-Rao with Dinur-Steurer yields the maximal probability of winning n parallel repetitions of a classical CHSH game (see A201488) asymptotic to this constant to the power of n, an improvement on the naive probability of (3/4)^n. (All the random bits are received upfront but the players cannot communicate or share an entangled state.) - Charles R Greathouse IV, May 15 2014
This is the height h of the isosceles triangle in a regular pentagon, in length units of the circumscribing radius, formed by a side as base and two adjacent radii. h = sin(3*Pi/10) = cos(Pi/5) (radius 1 unit). - Wolfdieter Lang, Jan 08 2018
Also the limiting value(L) of "r" which is abscissa of the vertex of the parabola F(n)*x^2 - F(n+1)*x + F(n + 2)(where F(n)=A000045(n) are the Fibonacci numbers and n>0). - Burak Muslu, Feb 24 2021

Examples

			0.80901699437494742410229341718281905886015458990288143106772431135263...
		

Crossrefs

Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A010503 (cube), A239798 (dodecahedron).

Programs

Formula

Equals (1+sqrt(5))/4 = cos(Pi/5) = sin(3*Pi/10). - R. J. Mathar, Jun 18 2006
Equals 2F1(4/5,1/5;1/2;3/4) / 2 = A019827 + 1/2. - R. J. Mathar, Oct 27 2008
Equals A001622 / 2. - Stanislav Sykora, Jan 30 2014
phi / 2 = (i^(2/5) + i^(-2/5)) / 2 = i^(2/5) - (sin(Pi/5))*i = i^(-2/5) + (sin(Pi/5))*i = i^(2/5) - (cos(3*Pi/10))*i = i^(-2/5) + (cos(3*Pi/10))*i. - Jaroslav Krizek, Feb 03 2014
Equals 1/A134972. - R. J. Mathar, Jan 17 2021
Equals 2*A019836*A019872. - R. J. Mathar, Jan 17 2021
Equals (A094214 + 1)/2 or 1/(2*A094214). - Burak Muslu, Feb 24 2021
Equals hypergeom([-2/5, -3/5], [6/5], -1) = hypergeom([-1/5, 3/5], [6/5], 1) = hypergeom([1/5, -3/5], [4/5], 1). - Peter Bala, Mar 04 2022
Equals Product_{k>=1} (1 - (-1)^k/A001611(k)). - Amiram Eldar, Nov 28 2024
Equals 2*A134944 = 3*A134946 = A187426-11/10 = A296182-1. - Hugo Pfoertner, Nov 28 2024
Equals A134945/4. Root of 4*x^2-2*x-1=0. - R. J. Mathar, Aug 29 2025

A020765 Decimal expansion of 1/sqrt(8).

Original entry on oeis.org

3, 5, 3, 5, 5, 3, 3, 9, 0, 5, 9, 3, 2, 7, 3, 7, 6, 2, 2, 0, 0, 4, 2, 2, 1, 8, 1, 0, 5, 2, 4, 2, 4, 5, 1, 9, 6, 4, 2, 4, 1, 7, 9, 6, 8, 8, 4, 4, 2, 3, 7, 0, 1, 8, 2, 9, 4, 1, 6, 9, 9, 3, 4, 4, 9, 7, 6, 8, 3, 1, 1, 9, 6, 1, 5, 5, 2, 6, 7, 5, 9, 7, 1, 2, 5, 9, 6, 8, 8, 3, 5, 8, 1, 9, 1, 0, 3, 9, 3
Offset: 0

Views

Author

Keywords

Comments

Multiplied by 10, this is the real and the imaginary part of sqrt(25i). - Alonso del Arte, Jan 11 2013
Radius of the midsphere (tangent to the edges) in a regular tetrahedron with unit edges. - Stanislav Sykora, Nov 20 2013
The side of the largest cubical present that can be wrapped (with cutting) by a unit square of wrapping paper. See Problem 10716 link. - Michel Marcus, Jul 24 2018
The ratio between the thickness and diameter of a geometrically fair coin having an equal probability, 1/3, of landing on each of its two faces and on its side after being tossed in the air. The calculation is based on comparing the areal projections of the faces and sides of the coin on a circumscribing sphere. (Mosteller, 1965). See A020760 for a physical solution. - Amiram Eldar, Sep 01 2020

Examples

			1/sqrt(8) = 0.353553390593273762200422181052424519642417968844237018294...
		

References

  • Frederick Mosteller, Fifty challenging problems of probability, Dover, New York, 1965. See problem 38, pp. 10 and 58-60.

Crossrefs

Cf. Midsphere radii in Platonic solids:
A020761 (octahedron),
A010503 (cube),
A019863 (icosahedron),
A239798 (dodecahedron).

Programs

Formula

A010503 divided by 2.
Equals A201488 minus 1/2. Equals 1/(A010487-4) minus 1/4. - Jon E. Schoenfield, Jan 09 2017
Equals Integral_{x=0..oo} x*exp(-x)*BesselJ(0,x) dx. - Kritsada Moomuang, Jun 03 2025

A239798 Decimal expansion of the midsphere radius in a regular dodecahedron with unit edges.

Original entry on oeis.org

1, 3, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0
Offset: 1

Views

Author

Stanislav Sykora, Mar 27 2014

Keywords

Comments

In a regular polyhedron, the midsphere is tangent to all edges.
Apart from leading digits the same as A019863 and A019827. - R. J. Mathar, Mar 30 2014

Examples

			1.30901699437494742410229341718281905886015458990288143106772431135263...
		

Crossrefs

Midsphere radii in Platonic solids: A020765 (tetrahedron), A020761 (octahedron), A010503 (cube), A019863 (icosahedron).

Programs

  • Maple
    Digits:=100: evalf((3+sqrt(5))/4); # Wesley Ivan Hurt, Mar 27 2014
  • Mathematica
    RealDigits[GoldenRatio^2/2,10,105][[1]] (* Vaclav Kotesovec, Mar 27 2014 *)
  • PARI
    (3+sqrt(5))/4

Formula

Equals phi^2/2, phi being the golden ratio (A001622).
Equals (3+sqrt(5))/4.
Equals lim_{n->oo} A000045(n)/A066983(n). - Dimitri Papadopoulos, Nov 23 2023
Equals Product_{k>=2} (1 + (-1)^k/A001654(k)). - Amiram Eldar, Dec 02 2024
Equals A094884^2 = A104457/2 = 10/A187799. - Hugo Pfoertner, Dec 02 2024

A192492 Decimal expansion of imaginary part of 5th nontrivial zero of Riemann zeta function.

Original entry on oeis.org

3, 2, 9, 3, 5, 0, 6, 1, 5, 8, 7, 7, 3, 9, 1, 8, 9, 6, 9, 0, 6, 6, 2, 3, 6, 8, 9, 6, 4, 0, 7, 4, 9, 0, 3, 4, 8, 8, 8, 1, 2, 7, 1, 5, 6, 0, 3, 5, 1, 7, 0, 3, 9, 0, 0, 9, 2, 8, 0, 0, 0, 3, 4, 4, 0, 7, 8, 4, 8, 1, 5, 6, 0, 8, 6, 3, 0, 5, 5, 1, 0, 0, 5, 9, 3, 8, 8, 4, 8, 4, 9, 6, 1, 3, 5, 3
Offset: 2

Views

Author

Alonso del Arte, Jul 02 2011

Keywords

Comments

The real part of the 5th nontrivial zero is of course 1/2 (A020761; the Riemann hypothesis is here assumed to be true).

Examples

			The zero is at 1/2 + i * 32.9350615877391896906623689640749...
		

Crossrefs

Cf. A002410: nearest integer to imaginary part of n-th zero of Riemann zeta function (main entry); also A013629 (floor) and A092783 (ceiling).
The imaginary parts of the first 4 zeros are 14.134725... (A058303), 21.0220396... (A065434), 25.01085758... (A065452), 30.424876... (A065453). Others are A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
The real parts of the trivial zeros are given by A005843 multiplied by -1 (and ignoring the initial 0 of that sequence).

Programs

  • Mathematica
    (* ZetaZero was introduced in Version 6.0 *) RealDigits[ZetaZero[5], 10, 100][[1]]
  • PARI
    solve(y=32,33,real(zeta(1/2+y*I))) \\ Charles R Greathouse IV, Mar 10 2016
    
  • PARI
    lfunzeros(lzeta,[32,33])[1] \\ Charles R Greathouse IV, Mar 10 2016

Extensions

Example and cross-references edited by M. F. Hasler, Nov 23 2018

A375067 Decimal expansion of the apothem (inradius) of a regular pentagon with unit side length.

Original entry on oeis.org

6, 8, 8, 1, 9, 0, 9, 6, 0, 2, 3, 5, 5, 8, 6, 7, 6, 9, 1, 0, 3, 6, 0, 4, 7, 9, 0, 9, 5, 5, 4, 4, 3, 8, 3, 9, 7, 6, 2, 9, 4, 9, 6, 6, 8, 0, 0, 4, 0, 7, 9, 3, 3, 1, 6, 8, 2, 8, 3, 7, 8, 8, 2, 8, 0, 9, 5, 4, 7, 5, 9, 6, 8, 8, 3, 5, 8, 6, 4, 9, 2, 5, 3, 2, 9, 7, 6, 4, 9, 6
Offset: 0

Views

Author

Paolo Xausa, Jul 29 2024

Keywords

Examples

			0.688190960235586769103604790955443839762949668...
		

Crossrefs

Cf. A300074 (circumradius), A375068 (sagitta), A102771 (area).
Cf. apothem of other polygons with unit side length: A020769 (triangle), A020761 (square), A010527 (hexagon), A374971 (heptagon), A174968 (octagon), A375152 (9-gon), A179452 (10-gon), A375191 (11-gon), A375193 (12-gon).

Programs

Formula

Equals cot(Pi/5)/2 = A019952/2.
Equals 1/(2*tan(Pi/5)) = 1/(2*A019934).
Equals sqrt(1/4 + 1/(2*sqrt(5))).
Equals (1/2)*csc(Pi/5)*cos(Pi/5) = A300074*A019863.
Equals A300074 - A375068.
Equals A131595/30. - Hugo Pfoertner, Jul 30 2024

A374971 Decimal expansion of the apothem (inradius) of a regular heptagon with unit side length.

Original entry on oeis.org

1, 0, 3, 8, 2, 6, 0, 6, 9, 8, 2, 8, 6, 1, 6, 8, 2, 8, 3, 5, 8, 1, 7, 6, 9, 4, 3, 0, 7, 4, 2, 9, 2, 0, 1, 6, 5, 3, 5, 2, 8, 6, 0, 1, 0, 3, 3, 1, 2, 9, 8, 4, 2, 6, 2, 0, 4, 1, 7, 0, 8, 6, 8, 8, 4, 3, 1, 5, 1, 4, 2, 4, 3, 5, 3, 2, 2, 9, 8, 8, 5, 8, 7, 3, 2, 2, 0, 8, 7, 7
Offset: 1

Views

Author

Paolo Xausa, Jul 26 2024

Keywords

Examples

			1.0382606982861682835817694307429201653528601033...
		

Crossrefs

Cf. A374957 (circumradius), A374972 (sagitta), A178817 (area).
Cf. apothem of other polygons with unit side length: A020769 (triangle), A020761 (square), A375067 (pentagon), A010527 (hexagon), A174968 (octagon), A375152 (9-gon), A179452 (10-gon), A375191 (11-gon), A375193 (12-gon).

Programs

Formula

Equals cot(Pi/7)/2 = A178818/2.
Equals 1/(2*tan(Pi/7)) = 1/(2*A343058).
Equals A374957*cos(Pi/7) = A374957*A073052.
Equals A374957 - A374972.
Largest of the 6 real-valued roots of 448*x^6 -560*x^4 +84*x^2 -1 =0. - R. J. Mathar, Aug 29 2025

A375152 Decimal expansion of the apothem (inradius) of a regular 9-gon with unit side length.

Original entry on oeis.org

1, 3, 7, 3, 7, 3, 8, 7, 0, 9, 7, 2, 7, 3, 1, 1, 1, 3, 9, 3, 8, 0, 8, 3, 2, 0, 1, 3, 2, 4, 8, 8, 3, 6, 3, 5, 8, 8, 7, 5, 9, 3, 6, 2, 9, 9, 5, 8, 5, 4, 1, 2, 9, 1, 0, 7, 5, 2, 6, 3, 6, 5, 0, 1, 2, 5, 9, 9, 4, 9, 1, 2, 6, 9, 4, 0, 7, 9, 6, 5, 9, 2, 1, 7, 0, 3, 0, 2, 1, 2
Offset: 1

Views

Author

Paolo Xausa, Aug 01 2024

Keywords

Examples

			1.3737387097273111393808320132488363588759362995854...
		

Crossrefs

Cf. A375151 (circumradius), A375153 (sagitta), A256853 (area).
Cf. apothem of other polygons with unit side length: A020769 (triangle), A020761 (square), A375067 (pentagon), A010527 (hexagon), A374971 (heptagon), A174968 (octagon), A179452 (10-gon), A375191 (11-gon), A375193 (12-gon).

Programs

Formula

Equals cot(Pi/9)/2 = A019968/2.
Equals 1/(2*tan(Pi/9)) = 1/(2*A019918).
Equals A375151*cos(Pi/9) = A375151*A019879.
Equals A375151 - A375153.
Largest of the 6 real-valued roots of 192*x^6 -432*x^4 +132*x^2 -1=0. - R. J. Mathar, Aug 29 2025

A375191 Decimal expansion of the apothem (inradius) of a regular 11-gon with unit side length.

Original entry on oeis.org

1, 7, 0, 2, 8, 4, 3, 6, 1, 9, 4, 4, 4, 6, 2, 5, 0, 0, 4, 5, 2, 4, 0, 6, 5, 1, 7, 3, 3, 2, 4, 4, 2, 4, 4, 1, 5, 9, 7, 8, 6, 4, 9, 9, 9, 3, 0, 6, 0, 9, 1, 4, 0, 7, 0, 4, 8, 8, 9, 6, 7, 0, 3, 0, 5, 3, 5, 9, 7, 6, 5, 3, 4, 5, 1, 3, 2, 9, 1, 0, 4, 8, 1, 1, 1, 4, 5, 7, 0, 2
Offset: 1

Views

Author

Paolo Xausa, Aug 04 2024

Keywords

Examples

			1.702843619444625004524065173324424415978649993...
		

Crossrefs

Cf. A375190 (circumradius), A375192 (sagitta), A256854 (area).
Cf. apothem of other polygons with unit side length: A020769 (triangle), A020761 (square), A375067 (pentagon), A010527 (hexagon), A374971 (heptagon), A174968 (octagon), A375152 (9-gon), A179452 (10-gon), A375193 (12-gon).

Programs

Formula

Equals cot(Pi/11)/2.
Equals 1/(2*tan(Pi/11)).
Equals A375190*cos(Pi/11).
Equals A375190 - A375192.

A375193 Decimal expansion of the apothem (inradius) of a regular 12-gon with unit side length.

Original entry on oeis.org

1, 8, 6, 6, 0, 2, 5, 4, 0, 3, 7, 8, 4, 4, 3, 8, 6, 4, 6, 7, 6, 3, 7, 2, 3, 1, 7, 0, 7, 5, 2, 9, 3, 6, 1, 8, 3, 4, 7, 1, 4, 0, 2, 6, 2, 6, 9, 0, 5, 1, 9, 0, 3, 1, 4, 0, 2, 7, 9, 0, 3, 4, 8, 9, 7, 2, 5, 9, 6, 6, 5, 0, 8, 4, 5, 4, 4, 0, 0, 0, 1, 8, 5, 4, 0, 5, 7, 3, 0, 9
Offset: 1

Views

Author

Paolo Xausa, Aug 04 2024

Keywords

Comments

Apart from the first digit the same as A010527.

Examples

			1.8660254037844386467637231707529361834714026269...
		

Crossrefs

Cf. A188887 (circumradius), A375194 (sagitta), A178809 (area).
Cf. apothem of other polygons with unit side length: A020769 (triangle), A020761 (square), A375067 (pentagon), A010527 (hexagon), A374971 (heptagon), A174968 (octagon), A375152 (9-gon), A179452 (10-gon), A375191 (11-gon).

Programs

Formula

Equals cot(Pi/12)/2 = (2 + sqrt(3))/2 = A019973/2.
Equals 1/(2*tan(Pi/12)) = 1/(2*A019913).
Equals A188887*cos(Pi/12) = A188887*A019884.
Equals A188887 - A375194.
Equals A332133^2 = 2 - A375069. - Hugo Pfoertner, Aug 04 2024
Showing 1-10 of 21 results. Next