cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A001654 Golden rectangle numbers: F(n) * F(n+1), where F(n) = A000045(n) (Fibonacci numbers).

Original entry on oeis.org

0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895, 12816, 33552, 87841, 229970, 602070, 1576239, 4126648, 10803704, 28284465, 74049690, 193864606, 507544127, 1328767776, 3478759200, 9107509825, 23843770274, 62423800998, 163427632719, 427859097160, 1120149658760
Offset: 0

Views

Author

Keywords

Comments

a(n)/A007598(n) ~= golden ratio, especially for larger n. - Robert Happelberg (roberthappelberg(AT)yahoo.com), Jul 25 2005
Let phi be the golden ratio (cf. A001622). Then 1/phi = phi - 1 = Sum_{n>=1} (-1)^(n-1)/a(n), an alternating infinite series consisting solely of unit fractions. - Franz Vrabec, Sep 14 2005
a(n+2) is the Hankel transform of A005807 aerated. - Paul Barry, Nov 04 2008
A more exact name would be: Golden convergents to rectangle numbers. These rectangles are not actually golden (ratio of sides is not phi) but are golden convergents (sides are numerator and denominator of convergents in the continued fraction expansion of phi, whence ratio of sides converges to phi). - Daniel Forgues, Nov 29 2009
The Kn4 sums (see A180662 for definition) of the "Races with Ties" triangle A035317 lead to this sequence. - Johannes W. Meijer, Jul 20 2011
Numbers m such that m(5m+2)+1 or m(5m-2)+1 is a square. - Bruno Berselli, Oct 22 2012
In pairs, these numbers are important in finding binomial coefficients that appear in at least six places in Pascal's triangle. For instance, the pair (m,n) = (40, 104) finds the numbers binomial(n-1,m) = binomial(n,m-1). Two additional numbers are found on the other side of the triangle. The final two numbers appear in row binomial(n-1,m). See A003015. - T. D. Noe, Mar 13 2013
For n>1, a(n) is one-half the area of the trapezoid created by the four points (F(n),L(n)), (L(n),F(n)), (F(n+1), L(n+1)), (L(n+1), F(n+1)) where F(n) = A000045(n) and L(n) = A000032(n). - J. M. Bergot, May 14 2014
[Note on how to calculate: take the two points (a,b) and (c,d) with a
a(n) = A067962(n-1) / A067962(n-2), n > 1. - Reinhard Zumkeller, Sep 24 2015
Can be obtained (up to signs) by setting x = F(n)/F(n+1) in g.f. for Fibonacci numbers - see Pongsriiam. - N. J. A. Sloane, Mar 23 2017

Examples

			G.f. = x + 2*x^2 + 6*x^3 + 15*x^4 + 40*x^5 + 104*x^6 + 273*x^7 + 714*x^8 + ...
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 9.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a001654 n = a001654_list !! n
    a001654_list = zipWith (*) (tail a000045_list) a000045_list
    -- Reinhard Zumkeller, Jun 08 2013
    
  • Magma
    I:=[0,1,2]; [n le 3 select I[n] else 2*Self(n-1) + 2*Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 17 2018
  • Maple
    with(combinat): A001654:=n->fibonacci(n)*fibonacci(n+1):
    seq(A001654(n), n=0..28); # Zerinvary Lajos, Oct 07 2007
  • Mathematica
    LinearRecurrence[{2,2,-1}, {0,1,2}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
    Times@@@Partition[Fibonacci[Range[0,30]],2,1] (* Harvey P. Dale, Aug 18 2011 *)
    Accumulate[Fibonacci[Range[0, 30]]^2] (* Paolo Xausa, May 31 2024 *)
  • PARI
    A001654(n)=fibonacci(n)*fibonacci(n+1);
    
  • PARI
    b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j));
    vector(30, n, b(n-1, 2))  \\ Joerg Arndt, May 08 2016
    
  • Python
    from sympy import fibonacci as F
    def a(n): return F(n)*F(n + 1)
    [a(n) for n in range(101)] # Indranil Ghosh, Aug 03 2017
    
  • Python
    from math import prod
    from gmpy2 import fib2
    def A001654(n): return prod(fib2(n+1)) # Chai Wah Wu, May 19 2022
    

Formula

a(n) = A010048(n+1, 2) = Fibonomial(n+1, 2).
a(n) = A006498(2*n-1).
a(n) = a(n - 1) + A007598(n) = a(n - 1) + A000045(n)^2 = Sum_{j <= n} Fibonacci(j)^2. - Henry Bottomley, Feb 09 2001 [corrected by Ridouane Oudra, Apr 12 2025]
For n > 0, 1 - 1/a(n+1) = Sum_{k=1..n} 1/(F(k)*F(k+2)) where F(k) is the k-th Fibonacci number. - Benoit Cloitre, Aug 31 2002.
G.f.: x/(1-2*x-2*x^2+x^3) = x/((1+x)*(1-3*x+x^2)). (Simon Plouffe in his 1992 dissertation; see Comments to A055870),
a(n) = 3*a(n-1) - a(n-2) - (-1)^n = -a(-1-n).
Let M = the 3 X 3 matrix [1 2 1 / 1 1 0 / 1 0 0]; then a(n) = the center term in M^n *[1 0 0]. E.g., a(5) = 40 since M^5 * [1 0 0] = [64 40 25]. - Gary W. Adamson, Oct 10 2004
a(n) = Sum{k=0..n} Fibonacci(k)^2. The proof is easy. Start from a square (1*1). On the right side, draw another square (1*1). On the above side draw a square ((1+1)*(1+1)). On the left side, draw a square ((1+2)*(1+2)) and so on. You get a rectangle (F(n)*F(1+n)) which contains all the squares of side F(1), F(2), ..., F(n). - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 19 2007
With phi = (1+sqrt(5))/2, a(n) = round((phi^(2*n+1))/5) = floor((1/2) + (phi^(2*n+1))/5), n >= 0. - Daniel Forgues, Nov 29 2009
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3), a(1)=1, a(2)=2, a(3)=6. - Sture Sjöstedt, Feb 06 2010
a(n) = (A002878(n) - (-1)^n)/5. - R. J. Mathar, Jul 22 2010
a(n) = 1/|F(n+1)/F(n) - F(n)/F(n-1)| where F(n) = Fibonacci numbers A000045. b(n) = F(n+1)/F(n) - F(n)/F(n-1): 1/1, -1/2, 1/6, -1/15, 1/40, -1/104, ...; c(n) = 1/b(n) = a(n)*(-1)^(n+1): 1, -2, 6, -15, 40, -104, ... (n=1,2,...). - Thomas Ordowski, Nov 04 2010
a(n) = (Fibonacci(n+2)^2 - Fibonacci(n-1)^2)/4. - Gary Detlefs, Dec 03 2010
Let d(n) = n mod 2, a(0)=0 and a(1)=1. For n > 1, a(n) = d(n) + 2*a(n-1) + Sum_{k=0..n-2} a(k). - L. Edson Jeffery, Mar 20 2011
From Tim Monahan, Jul 11 2011: (Start)
a(n+1) = ((2+sqrt(5))*((3+sqrt(5))/2)^n+(2-sqrt(5))*((3-sqrt(5))/2)^n+(-1)^n)/5.
a(n) = ((1+sqrt(5))*((3+sqrt(5))/2)^n+(1-sqrt(5))*((3-sqrt(5))/2)^n-2*(-1)^n)/10. (End)
From Wolfdieter Lang, Jul 21 2012: (Start)
a(n) = (2*A059840(n+2) - A027941(n))/3, n >= 0, with A059840(n+2) = Sum_{k=0..n} F(k)*F(k+2) and A027941(n) = A001519(n+1) - 1, n >= 0, where A001519(n+1) = F(2*n+1). (End)
a(n) = (-1)^n * Sum_{k=0..n} (-1)^k*F(2*k), n >= 0. - Wolfdieter Lang, Aug 11 2012
a(-1-n) = -a(n) for all n in Z. - Michael Somos, Sep 19 2014
0 = a(n)*(+a(n+1) - a(n+2)) + a(n+1)*(-2*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 19 2014
a(n) = (L(2*n+1) - (-1)^n)/5 with L(k) = A000032(k). - J. M. Bergot, Apr 15 2016
E.g.f.: ((3 + sqrt(5))*exp((5+sqrt(5))*x/2) - 2*exp((2*x)/(3+sqrt(5))+x) - 1 - sqrt(5))*exp(-x)/(5*(1 + sqrt(5))). - Ilya Gutkovskiy, Apr 15 2016
From Klaus Purath, Apr 24 2019: (Start)
a(n) = A061646(n) - Fibonacci(n-1)^2.
a(n) = (A061646(n+1) - A061646(n))/2. (End)
a(n) = A226205(n+1) + (-1)^(n+1). - Flávio V. Fernandes, Apr 23 2020
Sum_{n>=1} 1/a(n) = A290565. - Amiram Eldar, Oct 06 2020
Product_{n>=2} (1 + (-1)^n/a(n)) = phi^2/2 (A239798). - Amiram Eldar, Dec 02 2024
G.f.: x * exp( Sum_{k>=1} F(3*k)/F(k) * x^k/k ), where F(n) = A000045(n). - Seiichi Manyama, May 07 2025

Extensions

Extended by Wolfdieter Lang, Jun 27 2000

A010503 Decimal expansion of 1/sqrt(2).

Original entry on oeis.org

7, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9, 3, 7, 6, 7, 1, 6, 3, 8, 2, 0, 7, 8, 6, 3, 6, 7, 5, 0, 6
Offset: 0

Keywords

Comments

The decimal expansion of sqrt(50) = 5*sqrt(2) = 7.0710678118654752440... gives essentially the same sequence.
Also real and imaginary part of the square root of the imaginary unit. - Alonso del Arte, Jan 07 2011
1/sqrt(2) = (1/2)^(1/2) = (1/4)^(1/4) (see the comments in A072364).
If a triangle has sides whose lengths form a harmonic progression in the ratio 1 : 1/(1 + d) : 1/(1 + 2d) then the triangle inequality condition requires that d be in the range -1 + 1/sqrt(2) < d < 1/sqrt(2). - Frank M Jackson, Oct 11 2011
Let s_2(n) be the sum of the base-2 digits of n and epsilon(n) = (-1)^s_2(n), the Thue-Morse sequence A010060, then Product_{n >= 0} ((2*n + 1)/(2*n + 2))^epsilon(n) = 1/sqrt(2). - Jonathan Vos Post, Jun 03 2012
The square root of 1/2 and thus it follows from the Pythagorean theorem that it is the sine of 45 degrees (and the cosine of 45 degrees). - Alonso del Arte, Sep 24 2012
Circumscribed sphere radius for a regular octahedron with unit edges. In electrical engineering, ratio of effective amplitude to peak amplitude of an alternating current/voltage. - Stanislav Sykora, Feb 10 2014
Radius of midsphere (tangent to edges) in a cube with unit edges. - Stanislav Sykora, Mar 27 2014
Positive zero of the Hermite polynomial of degree 2. - A.H.M. Smeets, Jun 02 2025

Examples

			0.7071067811865475...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Sections 1.1, 7.5.2, and 8.2, pp. 1-3, 468, 484, 487.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. A073084 (infinite tetration limit).
Platonic solids circumradii: A010527 (cube), A019881 (icosahedron), A179296 (dodecahedron), A187110 (tetrahedron).
Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A019863 (icosahedron), A239798 (dodecahedron).

Programs

  • Magma
    1/Sqrt(2); // Vincenzo Librandi, Feb 21 2016
  • Maple
    Digits:=100; evalf(1/sqrt(2)); Wesley Ivan Hurt, Mar 27 2014
  • Mathematica
    N[ 1/Sqrt[2], 200]
    RealDigits[1/Sqrt[2],10,120][[1]] (* Harvey P. Dale, Mar 25 2019 *)
  • PARI
    default(realprecision, 20080); x=10*(1/sqrt(2)); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b010503.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009
    

Formula

1/sqrt(2) = cos(Pi/4) = sqrt(2)/2. - Eric Desbiaux, Nov 05 2008
a(n) = 9 - A268682(n). As constants, this sequence is 1 - A268682. - Philippe Deléham, Feb 21 2016
From Amiram Eldar, Jun 29 2020: (Start)
Equals sin(Pi/4) = cos(Pi/4).
Equals Integral_{x=0..Pi/4} cos(x) dx. (End)
Equals (1/2)*A019884 + A019824 * A010527 = A019851 * A019896 + A019812 * A019857. - R. J. Mathar, Jan 27 2021
Equals hypergeom([-1/2, -3/4], [5/4], -1). - Peter Bala, Mar 02 2022
Limit_{n->oo} (sqrt(T(n+1)) - sqrt(T(n))) = 1/sqrt(2), where T(n) = n(n+1)/2 = A000217(n) is the triangular numbers. - Jules Beauchamp, Sep 18 2022
Equals Product_{k>=0} ((2*k+1)/(2*k+2))^((-1)^A000120(k)) (Woods, 1978). - Amiram Eldar, Feb 04 2024
From Stefano Spezia, Oct 15 2024: (Start)
Equals 1 + Sum_{k>=1} (-1)^k*binomial(2*k,k)/2^(2*k) [Newton].
Equal Product_{k>=1} 1 - 1/(4*(2*k - 1)^2). (End)
Equals Product_{k>=0} (1 - (-1)^k/(6*k+3)). - Amiram Eldar, Nov 22 2024

Extensions

More terms from Harry J. Smith, Jun 02 2009

A104457 Decimal expansion of 1 + phi = phi^2 = (3 + sqrt(5))/2.

Original entry on oeis.org

2, 6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9, 0, 2, 4, 4, 9, 7, 0, 7, 2, 0, 7, 2, 0, 4, 1, 8, 9, 3, 9, 1, 1, 3, 7, 4, 8
Offset: 1

Author

Eric W. Weisstein, Mar 08 2005

Keywords

Comments

Only first term differs from the decimal expansion of phi.
Zelo extends work of D. Roy by showing that the square of the golden ratio is the optimal exponent of approximation by algebraic numbers of degree 4 with bounded denominator and trace. - Jonathan Vos Post, Mar 02 2009 (Cf. last sentence in the Zelo reference. - Joerg Arndt, Jan 04 2014)
Hawkes asks: "What two numbers are those whose product, difference of their squares, and the ratio or quotient of their cubes, are all equal to each other?". - Charles R Greathouse IV, Dec 11 2012
This is the case n=10 in (Gamma(1/n)/Gamma(3/n))*(Gamma((n-1)/n)/Gamma((n-3)/n)) = 1+2*cos(2*Pi/n). - Bruno Berselli, Dec 14 2012
An algebraic integer of degree 2, with minimal polynomial x^2 - 3x + 1. - Charles R Greathouse IV, Nov 12 2014 [The other root is 2 - phi = A132338 - Wolfdieter Lang, Aug 29 2022]
To eight digits: 5*(((Pi+1)/e)-1) = 2.61803395481182... - Dan Graham, Nov 21 2017
The ratio diagonal/side of the second smallest diagonal in a regular 10-gon. - Mohammed Yaseen, Nov 04 2020
phi^2/10 is the moment of inertia of a solid regular icosahedron with a unit mass and a unit edge length (see A341906). - Amiram Eldar, Jun 08 2021

Examples

			2.6180339887498948482045868343656381177203091798...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.17.1, p. 153.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 138-139.
  • Damien Roy. Diophantine Approximation in Small Degree. Centre de Recherches Mathématiques. CRM Proceedings and Lecture Notes. Volume 36 (2004), 269-285.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 45.

Crossrefs

2 + 2*cos(2*Pi/n): A116425 (n = 7), A332438 (n = 9), A296184 (n = 10), A019973 (n = 12).

Programs

Formula

Equals 2 + A094214 = 1 + A001622. - R. J. Mathar, May 19 2008
Satisfies these three equations: x-sqrt(x)-1 = 0; x-1/sqrt(x)-2 = 0; x^2-3*x+1 = 0. - Richard R. Forberg, Oct 11 2014
Equals the nested radical sqrt(phi^2+sqrt(phi^4+sqrt(phi^8+...))). For a proof, see A094885. - Stanislav Sykora, May 24 2016
From Christian Katzmann, Mar 19 2018: (Start)
Equals Sum_{n>=0} (5*(2*n)!+8*n!^2)/(2*n!^2*3^(2*n+1)).
Equals 3/2 + Sum_{n>=0} 5*(2*n)!/(2*n!^2*3^(2*n+1)). (End)
Equals 1/A132338 = 2*A239798 = 5*A229780. - Mohammed Yaseen, Nov 04 2020
Equals Product_{k>=1} 1 + 1/(phi + phi^k), where phi is the golden ratio (A001622) (Ohtsuka, 2018). - Amiram Eldar, Dec 02 2021
c^n = phi * A001906(n) + A001519(n), where c = phi^2. - Gary W. Adamson, Sep 08 2023
Equals lim_{n->oo} S(n, 3)/S(n-1, 3) with the S-Chebyshev polynomials (see A049310), S(3, n) = A000045(2*(n+1)) = A001906(n+1). - Wolfdieter Lang, Nov 15 2023
From Peter Bala, May 08 2024: (Start)
Constant c = 2 + 2*cos(2*Pi/5).
The linear fractional transformation z -> c - c/z has order 5, that is, z = c - c/(c - c/(c - c/(c - c/(c - c/z)))). (End)
Equals Product_{k>=1} (1 + 1/A032908(k)). - Amiram Eldar, Nov 28 2024

A019863 Decimal expansion of sin(3*Pi/10) (sine of 54 degrees, or cosine of 36 degrees).

Original entry on oeis.org

8, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8
Offset: 0

Comments

Midsphere radius of regular icosahedron with unit edges.
Also half of the golden ratio (A001622). - Stanislav Sykora, Jan 30 2014
Andris Ambainis (see Aaronson link) observes that combining the results of Barak-Hardt-Haviv-Rao with Dinur-Steurer yields the maximal probability of winning n parallel repetitions of a classical CHSH game (see A201488) asymptotic to this constant to the power of n, an improvement on the naive probability of (3/4)^n. (All the random bits are received upfront but the players cannot communicate or share an entangled state.) - Charles R Greathouse IV, May 15 2014
This is the height h of the isosceles triangle in a regular pentagon, in length units of the circumscribing radius, formed by a side as base and two adjacent radii. h = sin(3*Pi/10) = cos(Pi/5) (radius 1 unit). - Wolfdieter Lang, Jan 08 2018
Also the limiting value(L) of "r" which is abscissa of the vertex of the parabola F(n)*x^2 - F(n+1)*x + F(n + 2)(where F(n)=A000045(n) are the Fibonacci numbers and n>0). - Burak Muslu, Feb 24 2021

Examples

			0.80901699437494742410229341718281905886015458990288143106772431135263...
		

Crossrefs

Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A010503 (cube), A239798 (dodecahedron).

Programs

Formula

Equals (1+sqrt(5))/4 = cos(Pi/5) = sin(3*Pi/10). - R. J. Mathar, Jun 18 2006
Equals 2F1(4/5,1/5;1/2;3/4) / 2 = A019827 + 1/2. - R. J. Mathar, Oct 27 2008
Equals A001622 / 2. - Stanislav Sykora, Jan 30 2014
phi / 2 = (i^(2/5) + i^(-2/5)) / 2 = i^(2/5) - (sin(Pi/5))*i = i^(-2/5) + (sin(Pi/5))*i = i^(2/5) - (cos(3*Pi/10))*i = i^(-2/5) + (cos(3*Pi/10))*i. - Jaroslav Krizek, Feb 03 2014
Equals 1/A134972. - R. J. Mathar, Jan 17 2021
Equals 2*A019836*A019872. - R. J. Mathar, Jan 17 2021
Equals (A094214 + 1)/2 or 1/(2*A094214). - Burak Muslu, Feb 24 2021
Equals hypergeom([-2/5, -3/5], [6/5], -1) = hypergeom([-1/5, 3/5], [6/5], 1) = hypergeom([1/5, -3/5], [4/5], 1). - Peter Bala, Mar 04 2022
Equals Product_{k>=1} (1 - (-1)^k/A001611(k)). - Amiram Eldar, Nov 28 2024
Equals 2*A134944 = 3*A134946 = A187426-11/10 = A296182-1. - Hugo Pfoertner, Nov 28 2024
Equals A134945/4. Root of 4*x^2-2*x-1=0. - R. J. Mathar, Aug 29 2025

A020761 Decimal expansion of 1/2.

Original entry on oeis.org

5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Keywords

Comments

Real part of all nontrivial zeros of the Riemann zeta function (assuming the Riemann hypothesis to be true). - Alonso del Arte, Jul 02 2011
Radius of a sphere with surface area Pi. - Omar E. Pol, Aug 09 2012
Radius of the midsphere (tangent to the edges) in a regular octahedron with unit edges. Also radius of the inscribed sphere (tangent to faces) in a cube with unit edges. - Stanislav Sykora, Mar 27 2014
Construct a rectangle of maximal area inside an arbitrary triangle. The ratio of the rectangle's area to the triangle's area is 1/2. - Rick L. Shepherd, Jul 30 2014

Examples

			1/2 = 0.50000000000000...
		

Crossrefs

Cf. In platonic solids:
midsphere radii:
A020765 (tetrahedron),
A010503 (cube),
A019863 (icosahedron),
A239798 (dodecahedron);
insphere radii:
A020781 (tetrahedron),
A020763 (octahedron),
A179294 (icosahedron),
A237603 (dodecahedron).

Programs

  • Maple
    Digits:=100; evalf(1/2); # Wesley Ivan Hurt, Mar 27 2014
  • Mathematica
    RealDigits[1/2, 10, 128][[1]] (* Alonso del Arte, Dec 13 2013 *)
    LinearRecurrence[{1},{5,0},99] (* Ray Chandler, Jul 15 2015 *)
  • PARI
    { default(realprecision); x=1/2*10; for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) } \\ Felix Fröhlich, Jul 24 2014
    
  • PARI
    a(n) = 5*(n==0); \\ Michel Marcus, Jul 25 2014

Formula

Equals Sum_{k>=1} (1/3^k). Hence 1/2 = 0.1111111111111... in base 3.
Cosine of 60 degrees, i.e., cos(Pi/3).
-zeta(0), zeta being the Riemann function. - Stanislav Sykora, Mar 27 2014
a(0) = 5; a(n) = 0, n > 0. - Wesley Ivan Hurt, Mar 27 2014
a(n) = 5 * floor(1/(n + 1)). - Wesley Ivan Hurt, Mar 27 2014
Equals 2*A019824*A019884. - R. J. Mathar, Jan 17 2021

A020765 Decimal expansion of 1/sqrt(8).

Original entry on oeis.org

3, 5, 3, 5, 5, 3, 3, 9, 0, 5, 9, 3, 2, 7, 3, 7, 6, 2, 2, 0, 0, 4, 2, 2, 1, 8, 1, 0, 5, 2, 4, 2, 4, 5, 1, 9, 6, 4, 2, 4, 1, 7, 9, 6, 8, 8, 4, 4, 2, 3, 7, 0, 1, 8, 2, 9, 4, 1, 6, 9, 9, 3, 4, 4, 9, 7, 6, 8, 3, 1, 1, 9, 6, 1, 5, 5, 2, 6, 7, 5, 9, 7, 1, 2, 5, 9, 6, 8, 8, 3, 5, 8, 1, 9, 1, 0, 3, 9, 3
Offset: 0

Keywords

Comments

Multiplied by 10, this is the real and the imaginary part of sqrt(25i). - Alonso del Arte, Jan 11 2013
Radius of the midsphere (tangent to the edges) in a regular tetrahedron with unit edges. - Stanislav Sykora, Nov 20 2013
The side of the largest cubical present that can be wrapped (with cutting) by a unit square of wrapping paper. See Problem 10716 link. - Michel Marcus, Jul 24 2018
The ratio between the thickness and diameter of a geometrically fair coin having an equal probability, 1/3, of landing on each of its two faces and on its side after being tossed in the air. The calculation is based on comparing the areal projections of the faces and sides of the coin on a circumscribing sphere. (Mosteller, 1965). See A020760 for a physical solution. - Amiram Eldar, Sep 01 2020

Examples

			1/sqrt(8) = 0.353553390593273762200422181052424519642417968844237018294...
		

References

  • Frederick Mosteller, Fifty challenging problems of probability, Dover, New York, 1965. See problem 38, pp. 10 and 58-60.

Crossrefs

Cf. Midsphere radii in Platonic solids:
A020761 (octahedron),
A010503 (cube),
A019863 (icosahedron),
A239798 (dodecahedron).

Programs

Formula

A010503 divided by 2.
Equals A201488 minus 1/2. Equals 1/(A010487-4) minus 1/4. - Jon E. Schoenfield, Jan 09 2017
Equals Integral_{x=0..oo} x*exp(-x)*BesselJ(0,x) dx. - Kritsada Moomuang, Jun 03 2025

A081068 a(n) = (Lucas(4*n+2) + 2)/5, or Fibonacci(2*n+1)^2, or A081067(n)/5.

Original entry on oeis.org

1, 4, 25, 169, 1156, 7921, 54289, 372100, 2550409, 17480761, 119814916, 821223649, 5628750625, 38580030724, 264431464441, 1812440220361, 12422650078084, 85146110326225, 583600122205489, 4000054745112196, 27416783093579881
Offset: 0

Author

R. K. Guy, Mar 04 2003

Keywords

Comments

Indices of 12-gonal numbers which are also squares (A342709). - Bernard Schott, Mar 19 2021
Values of y in solutions of x^2 = 5*y^2 - 4*y in positive integers. See A360467 for how this relates to a problem regarding the subdivision of a square into four triangles of integer area. - Alexander M. Domashenko, Feb 26 2023
And the corresponding x values of x^2 = 5*y^2 - 4*y are in A033890. - Bernard Schott, Feb 26 2023

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 19.
  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A081067.

Programs

  • Magma
    I:=[1, 4, 25]; [n le 3 select I[n] else 8*Self(n-1)-8*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 26 2012
    
  • Magma
    [(Lucas(4*n+2) + 2)/5: n in [0..30]]; // G. C. Greubel, Dec 17 2017
    
  • Maple
    luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 40 do printf(`%d,`,(luc(4*n+2)+2)/5) od: # James Sellers, Mar 05 2003
  • Mathematica
    CoefficientList[Series[-(1-4*x+x^2)/((x-1)*(x^2-7*x+1)),{x,0,40}],x] (* or *) LinearRecurrence[{8,-8,1},{1,4,25},50] (* Vincenzo Librandi, Jun 26 2012 *)
    Table[(LucasL[4*n+2] + 2)/5, {n,0,30}] (* G. C. Greubel, Dec 17 2017 *)
  • PARI
    main(size)={ return(concat([1],vector(size,n,fibonacci(2*n+1)^2))) } /* Anders Hellström, Jul 11 2015 */
    
  • PARI
    for(n=0,30, print1(fibonacci(2*n+1)^2, ", ")) \\ G. C. Greubel, Dec 17 2017

Formula

a(n) = A001519(n+1)^2 = A122367(n)^2 = A058038(n) + 1.
a(n) = A103433(n+1) - A103433(n).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
a(n) = Fibonacci(2*n)*Fibonacci(2*n+2) +1. - Gary Detlefs, Apr 01 2012
G.f.: (1-4*x+x^2)/((1-x)*(x^2-7*x+1)). - Colin Barker, Jun 26 2012
Sum_{n>=0} 1/(a(n) + 1) = 1/3*sqrt(5). - Peter Bala, Nov 30 2013
Sum_{n>=0} 1/a(n) = sqrt(5) * Sum_{n>=1} (-1)^(n+1)*n/Fibonacci(2*n) (Jennings, 1994). - Amiram Eldar, Oct 30 2020
Product_{n>=1} (1 + 1/a(n)) = phi^2/2 (A239798), where phi is the golden ratio (A001622) (Davlianidze, 2020). - Amiram Eldar, Dec 01 2021

Extensions

More terms from James Sellers, Mar 05 2003

A244593 Decimal expansion of z_c = phi^5 (where phi is the golden ratio), a lattice statistics constant which is the exact value of the critical activity of the hard hexagon model.

Original entry on oeis.org

1, 1, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8, 7, 4, 2
Offset: 2

Author

Jean-François Alcover, Jul 01 2014

Keywords

Comments

Essentially the same digit sequence as A239798, A019863 and A019827. - R. J. Mathar, Jul 03 2014
The minimal polynomial of this constant is x^2 - 11*x - 1. - Joerg Arndt, Jan 01 2017

Examples

			11.09016994374947424102293417182819058860154589902881431067724311352630...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.12.1 Phase transitions in Lattice Gas Models, p. 347.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 138-139.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 83.

Programs

  • Mathematica
    RealDigits[GoldenRatio^5, 10, 103] // First
  • PARI
    (5*sqrt(5)+11)/2 \\ Charles R Greathouse IV, Aug 10 2016

Formula

Equals ((1 + sqrt(5))/2)^5 = (11 + 5*sqrt(5))/2.
Equals phi^5 = 11 + 1/phi^5 = 3 + 5*phi, an integer in the quadratic number field Q(sqrt(5)). - Wolfdieter Lang, Nov 11 2023
Equals lim_{n->infinity} S(n, 5*(-1 + 2*phi))/ S(n-1, 5*(-1 + 2*phi)), with the S-Chebyshev polynomials (see A049310). - Wolfdieter Lang, Nov 15 2023

A377807 Decimal expansion of the midradius of a snub dodecahedron with unit edge length.

Original entry on oeis.org

2, 0, 9, 7, 0, 5, 3, 8, 3, 5, 2, 5, 2, 0, 8, 7, 9, 9, 2, 4, 0, 3, 9, 5, 9, 0, 5, 2, 3, 4, 8, 2, 8, 6, 2, 4, 0, 0, 3, 0, 8, 3, 9, 7, 3, 0, 5, 8, 1, 0, 3, 0, 7, 6, 2, 7, 3, 1, 7, 0, 6, 1, 7, 3, 1, 2, 7, 0, 5, 2, 9, 1, 4, 2, 5, 7, 7, 7, 5, 4, 5, 5, 3, 7, 3, 4, 0, 9, 4, 8
Offset: 1

Author

Paolo Xausa, Nov 10 2024

Keywords

Examples

			2.0970538352520879924039590523482862400308397305810...
		

Crossrefs

Cf. A377804 (surface area), A377805 (volume), A377806 (circumradius).
Cf. A239798 (analogous for a regular dodecahedron).
Cf. A377849.

Programs

  • Mathematica
    First[RealDigits[Sqrt[1/(1 - Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1])]/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["SnubDodecahedron", "Midradius"], 10, 100]]

Formula

Equals sqrt(1/(1 - A377849))/2.
Equals the real root closest to 2 of 4096*x^12 - 21504*x^10 + 16384*x^8 - 4672*x^6 + 624*x^4 - 40*x^2 + 1.

A377697 Decimal expansion of the midradius of a truncated dodecahedron with unit edge length.

Original entry on oeis.org

2, 9, 2, 7, 0, 5, 0, 9, 8, 3, 1, 2, 4, 8, 4, 2, 2, 7, 2, 3, 0, 6, 8, 8, 0, 2, 5, 1, 5, 4, 8, 4, 5, 7, 1, 7, 6, 5, 8, 0, 4, 6, 3, 7, 6, 9, 7, 0, 8, 6, 4, 4, 2, 9, 3, 2, 0, 3, 1, 7, 2, 9, 3, 4, 0, 5, 7, 8, 9, 0, 6, 9, 4, 2, 2, 8, 3, 5, 3, 6, 7, 4, 5, 6, 0, 8, 1, 0, 8, 0
Offset: 1

Author

Paolo Xausa, Nov 05 2024

Keywords

Examples

			2.9270509831248422723068802515484571765804637697...
		

Crossrefs

Cf. A377694 (surface area), A377695 (volume), A377696 (circumradius), A377698 (Dehn invariant, negated).
Cf. A239798 (analogous for a regular dodecahedron).

Programs

  • Mathematica
    First[RealDigits[(5 + Sqrt[45])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedDodecahedron", "Midradius"], 10, 100]]

Formula

Equals (5 + 3*sqrt(5))/4 = (5 + A010499)/4.
Equals A205769 - 1/2.
Showing 1-10 of 15 results. Next