A195284 Decimal expansion of shortest length of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(3,4,5); i.e., decimal expansion of 2*sqrt(10)/3.
2, 1, 0, 8, 1, 8, 5, 1, 0, 6, 7, 7, 8, 9, 1, 9, 5, 5, 4, 6, 6, 5, 9, 2, 9, 0, 2, 9, 6, 2, 1, 8, 1, 2, 3, 5, 5, 8, 1, 3, 0, 3, 6, 7, 5, 9, 5, 5, 0, 1, 4, 4, 5, 5, 1, 2, 3, 8, 3, 3, 6, 5, 6, 8, 5, 2, 8, 3, 9, 6, 2, 9, 2, 4, 2, 6, 1, 5, 8, 8, 1, 4, 2, 2, 9, 4, 9, 8, 7, 3, 8, 9, 1, 9, 5, 3, 3, 5, 3, 0
Offset: 1
A010469 Decimal expansion of square root of 12.
3, 4, 6, 4, 1, 0, 1, 6, 1, 5, 1, 3, 7, 7, 5, 4, 5, 8, 7, 0, 5, 4, 8, 9, 2, 6, 8, 3, 0, 1, 1, 7, 4, 4, 7, 3, 3, 8, 8, 5, 6, 1, 0, 5, 0, 7, 6, 2, 0, 7, 6, 1, 2, 5, 6, 1, 1, 1, 6, 1, 3, 9, 5, 8, 9, 0, 3, 8, 6, 6, 0, 3, 3, 8, 1, 7, 6, 0, 0, 0, 7, 4, 1, 6, 2, 2, 9, 2, 3, 7, 3, 5, 1, 4, 4, 9, 7, 1, 5
Offset: 1
Comments
3+sqrt(12) is the ratio of the radii of the three identical kissing circles to that of their inner Soddy circle. - Lekraj Beedassy, Mar 04 2006
sqrt(12)-3 = 2*sqrt(3)-3 is the area of the largest equilateral triangle that can be inscribed in a unit square (as stated in MathWorld/Weisstein link). - Rick L. Shepherd, Jun 24 2006
Continued fraction expansion is 3 followed by {2, 6} repeated (A040008). - Harry J. Smith, Jun 02 2009
Surface of a regular octahedron with unit edge, and twice the surface of a regular tetrahedron with unit edge. - Stanislav Sykora, Nov 21 2013
Imaginary part of the square of a complex cubic root of 64 (real part is -2). - Alonso del Arte, Jan 13 2014
Examples
3.4641016151377545870548926830...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 2.31.4 and 2.31.5, pp. 201-202.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- Eric Weisstein's World of Mathematics, Equilateral Triangle.
- Wikipedia, Octahedron.
- Wikipedia, Platonic solid.
- Index entries for algebraic numbers, degree 2.
Crossrefs
Programs
-
Maple
evalf[100](sqrt(12)); # Muniru A Asiru, Feb 12 2019
-
Mathematica
RealDigits[N[Sqrt[12], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
-
PARI
default(realprecision, 20080); x=sqrt(12); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010469.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009
Formula
Equals 2*sqrt(3) = 2*A002194. - Rick L. Shepherd, Jun 24 2006
A019884 Decimal expansion of sine of 75 degrees.
9, 6, 5, 9, 2, 5, 8, 2, 6, 2, 8, 9, 0, 6, 8, 2, 8, 6, 7, 4, 9, 7, 4, 3, 1, 9, 9, 7, 2, 8, 8, 9, 7, 3, 6, 7, 6, 3, 3, 9, 0, 4, 8, 3, 9, 0, 0, 8, 4, 0, 4, 5, 5, 0, 4, 0, 2, 3, 4, 3, 0, 7, 6, 3, 1, 0, 4, 2, 3, 2, 1, 3, 9, 7, 9, 8, 5, 5, 5, 1, 6, 3, 4, 7, 5, 6, 1, 7, 4, 1, 8, 5, 8, 0, 7, 0, 4, 5, 1
Offset: 0
Comments
Also the real part of i^(1/6). - Stanislav Sykora, Apr 25 2012
Length of one side of the new Type 15 Convex Pentagon. - Michel Marcus, Aug 04 2015
Examples
0.96592582628906828674974319972889736763390483900840455040234307631042...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Casey Mann et al, Type 15 Convex Pentagon, Jul 29 2015.
- Wikipedia, Trigonometric constants expressed in real radicals.
- Index entries for algebraic numbers, degree 4
Crossrefs
Cf. A120683.
Programs
-
Mathematica
RealDigits[Sin[75 Degree], 10, 100][[1]] (* Vincenzo Librandi, Aug 11 2014 *)
-
PARI
cos(Pi/12) \\ Charles R Greathouse IV, Apr 25 2012
Formula
Equals A019859 * A019874 + A019834 * A019849 = A019881 * A019896 + A019812 * A019827 . - R. J. Mathar, Jan 27 2021
Equals 1/(sqrt(6) - sqrt(2)) = 1/A120683. - Amiram Eldar, Aug 04 2022
Largest of the 4 real-valued roots of 16*x^4 -16*x^2 +1=0. - R. J. Mathar, Aug 29 2025
4*this^3 -3*this = A010503. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/8,1/8 ;1/2;3/4) = 2F1(-1/6,1/6;1/2;1/2). - R. J. Mathar, Aug 31 2025
A101263 Decimal expansion of sqrt(2 - sqrt(3)), edge length of a regular dodecagon with circumradius 1.
5, 1, 7, 6, 3, 8, 0, 9, 0, 2, 0, 5, 0, 4, 1, 5, 2, 4, 6, 9, 7, 7, 9, 7, 6, 7, 5, 2, 4, 8, 0, 9, 6, 6, 5, 6, 6, 9, 8, 1, 3, 7, 8, 0, 2, 6, 3, 9, 8, 6, 1, 0, 2, 7, 6, 2, 8, 0, 0, 6, 4, 1, 4, 6, 3, 0, 1, 1, 3, 9, 4, 9, 4, 9, 7, 6, 0, 3, 9, 9, 3, 8, 4, 4, 7, 3, 5, 9, 4, 9, 3, 8, 8, 4, 9, 9, 3, 3
Offset: 0
Comments
sqrt(2 - sqrt(3)) is the shape of the lesser sqrt(6)-contraction rectangle, as defined at A188739. - Clark Kimberling, Apr 16 2011
This is a constructible number, since 12-gon is a constructible polygon. See A003401 for more details. - Stanislav Sykora, May 02 2016
It is also smaller positive coordinate of (symmetrical) intersection points of x^2 + y^2 = 4 circle and y = 1/x hyperbola. The bigger coordinate is A188887. - Leszek Lezniak, Sep 18 2018
The greatest possible minimum distance between 8 points in a unit square (Schaer and Meir, 1965; Schaer, 1965; Croft et al., 1991). - Amiram Eldar, Feb 24 2025
Examples
0.517638090205041524697797675248096656698137802639861027628006414630113....
References
- Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved Problems in Geometry, Springer, 1991, Section D1, p. 108.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- J. Schaer and A. Meir, On a geometric extremum problem, Canadian Mathematical Bulletin, Vol. 8, No. 1 (1965), pp. 21-27.
- J. Schaer, The densest packing of 9 circles in a square, Canadian Mathematical Bulletin, Vol. 8, No. 3 (1965), pp. 273-277.
- Eric Weisstein's World of Mathematics, Dodecagon.
- Index entries for algebraic numbers, degree 4.
Programs
-
Mathematica
r = 6^(1/2); t = (r - (-4 + r^2)^(1/2))/2; FullSimplify[t] N[t, 130] RealDigits[N[t, 130]][[1]] (*A101263*) RealDigits[Sqrt[2-Sqrt[3]],10,120][[1]] (* Harvey P. Dale, Apr 24 2018 *)
-
PARI
2*sin(Pi/12) \\ Stanislav Sykora, May 02 2016
Formula
Equals sqrt(A019913). - R. J. Mathar, Apr 20 2009
Equals 2*sin(Pi/12) = 2*cos(Pi*5/12). - Stanislav Sykora, May 02 2016
Equals i^(5/6) + i^(-5/6). - Gary W. Adamson, Jul 07 2022
From Amiram Eldar, Nov 24 2024: (Start)
Equals (sqrt(3)-1)/sqrt(2).
Equals Product_{k>=1} (1 + (-1)^k/A091999(k)). (End)
A092242 Numbers that are congruent to {5, 7} (mod 12).
5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 89, 91, 101, 103, 113, 115, 125, 127, 137, 139, 149, 151, 161, 163, 173, 175, 185, 187, 197, 199, 209, 211, 221, 223, 233, 235, 245, 247, 257, 259, 269, 271, 281, 283, 293, 295, 305, 307, 317, 319, 329, 331
Offset: 1
References
- L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 64.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
Select[Range[331], MemberQ[{5, 7}, Mod[#, 12]] &] (* Amiram Eldar, Dec 04 2021 *)
Formula
1/5^2 + 1/7^2 + 1/17^2 + 1/19^2 + 1/29^2 + 1/31^2 + ... = Pi^2*(2 - sqrt(3))/36 = 0.073459792... [Jolley] - Gary W. Adamson, Dec 20 2006
a(n) = 12*n - a(n-1) - 12 (with a(1)=5). - Vincenzo Librandi, Nov 16 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 6*n - 3 - 2*(-1)^n.
G.f.: x*(5+2*x+5*x^2) / ( (1+x)*(x-1)^2 ). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (2 - sqrt(3))*Pi/12. - Amiram Eldar, Dec 04 2021
From Amiram Eldar, Nov 24 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sec(Pi/12) (A120683).
Extensions
Edited and extended by Ray Chandler, Feb 21 2004
A195348 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(3),2) and vertex angles of degree measure 30,60,90.
7, 5, 7, 8, 7, 4, 7, 6, 3, 9, 2, 6, 0, 2, 3, 9, 9, 8, 8, 1, 2, 1, 8, 6, 7, 4, 7, 4, 2, 7, 0, 0, 9, 5, 3, 0, 3, 4, 6, 7, 9, 2, 5, 4, 0, 1, 9, 4, 4, 5, 2, 0, 3, 5, 8, 4, 1, 3, 3, 3, 8, 1, 7, 4, 6, 1, 0, 0, 9, 1, 5, 8, 9, 3, 3, 7, 9, 8, 1, 0, 2, 3, 2, 1, 8, 3, 1, 2, 7, 1, 1, 0, 1, 2, 8, 5, 8, 2, 1, 3
Offset: 0
Comments
See A195284 for definitions and a general discussion.
Examples
(A)=0.7578747639260239988121867474270095303467925401944... (A)=(4*sqrt(6-3*sqrt(3)))/(3+sqrt(3)) (B)=2-(2/3)sqrt(3) (C)=sqrt(6)-sqrt(2)
Programs
-
Mathematica
a = 1; b = Sqrt[3]; c = 2; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195348 *) N[x2, 100] RealDigits[%] (* (B) A093821 *) N[x3, 100] RealDigits[%] (* (C) A120683 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* A195380 *)
A195380 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a 1,sqrt(3),sqrt(1) right triangle ABC (angles 30, 60, 90).
5, 5, 7, 5, 7, 0, 1, 7, 6, 9, 1, 7, 0, 9, 3, 8, 0, 3, 7, 2, 1, 1, 2, 9, 1, 4, 6, 0, 4, 2, 9, 2, 3, 1, 8, 7, 2, 1, 1, 5, 2, 6, 1, 0, 0, 8, 9, 0, 3, 0, 5, 5, 9, 9, 2, 1, 6, 7, 9, 5, 5, 8, 9, 0, 9, 5, 8, 8, 2, 5, 6, 8, 1, 9, 4, 3, 6, 5, 6, 9, 3, 1, 0, 6, 8, 1, 8, 1, 7, 7, 7, 1, 2, 4, 7, 7, 1, 9, 3, 5
Offset: 0
Comments
See A195284 for definitions and a general discussion.
Examples
Philo(ABC,I)=0.55757017691709380372112914604292318...
Crossrefs
Cf. A195284.
Programs
-
Mathematica
a = 1; b = Sqrt[3]; c = 2; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195348 *) N[x2, 100] RealDigits[%] (* (B) A093821 *) N[x3, 100] RealDigits[%] (* (C) A120683 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* A195380 *)
A281065 Decimal expansion of the greatest minimum separation between ten points in a unit square.
4, 2, 1, 2, 7, 9, 5, 4, 3, 9, 8, 3, 9, 0, 3, 4, 3, 2, 7, 6, 8, 8, 2, 1, 7, 6, 0, 6, 5, 0, 2, 9, 8, 0, 9, 1, 6, 1, 0, 3, 6, 7, 2, 1, 4, 0, 7, 2, 6, 1, 2, 2, 3, 2, 1, 6, 5, 4, 3, 7, 5, 4, 5, 4, 0, 6, 5, 1, 7, 2, 9, 3, 9, 2, 2, 4, 3, 7, 7, 9, 1, 5, 3, 6, 3, 2, 9, 0, 6, 8, 8, 4, 7, 1, 9, 2, 4, 6, 2, 4, 3, 9
Offset: 0
Comments
The corresponding values for two to nine points have simple expressions:
N ... d_min
2 ... sqrt(2) (A002193)
3 ... sqrt(6) - sqrt(2) (A120683)
4 ... 1 (A000007)
5 ... sqrt(2) / 2 (A010503)
6 ... sqrt(13) / 6 (A381485)
7 ... 4 - 2*sqrt(3) (A379338)
8 ... sqrt(2 - sqrt(3)) (A101263)
9 ... 1 / 2 (A020761)
In contrast, the value for ten points has a minimal polynomial of degree 18.
The smallest square ten unit circles will fit into has side length s = 2 + 2/d = 6.74744152... and the maximum radius of ten non-overlapping circles in the unit square is 1 / s = 0.14820432...
Examples
0.421279543983903432768821760650298...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.
Links
- C. de Groot, R. Peikert, and D. Würtz, The Optimal Packing of Ten Equal Circles in a Square, IPS Research Report, ETH Zürich, No. 90-12, August 1990.
- Eckard Specht, The best known packings of equal circles in a square.
- Jeremy Tan, Sympy (Python) program.
- Index entries for algebraic numbers, degree 18.
Crossrefs
Programs
-
Mathematica
RealDigits[x /. FindRoot[x^Range[18, 0, -1].{1180129, -11436428, 98015844, -462103584, 1145811528, -1398966480, 227573920, 1526909568, -1038261808, -2960321792, 7803109440, -9722063488, 7918461504, -4564076288, 1899131648, -563649536, 114038784, -14172160, 819200}, {x, 2/5}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Feb 24 2025 *)
-
PARI
my(p = Pol([1180129, -11436428, 98015844, -462103584, 1145811528, -1398966480, 227573920, 1526909568, -1038261808, -2960321792, 7803109440, -9722063488, 7918461504, -4564076288, 1899131648, -563649536, 114038784, -14172160, 819200])); polrootsreal(p)[1]
Formula
d is the smallest real root of 1180129*d^18 - 11436428*d^17 + 98015844*d^16 - 462103584*d^15 + 1145811528*d^14 - 1398966480*d^13 + 227573920*d^12 + 1526909568*d^11 - 1038261808*d^10 - 2960321792*d^9 + 7803109440*d^8 - 9722063488*d^7 + 7918461504*d^6 - 4564076288*d^5 + 1899131648*d^4 - 563649536*d^3 + 114038784*d^2 - 14172160*d + 819200.
A381485 Decimal expansion of sqrt(13)/6.
6, 0, 0, 9, 2, 5, 2, 1, 2, 5, 7, 7, 3, 3, 1, 5, 4, 8, 8, 5, 3, 2, 0, 3, 5, 4, 4, 5, 7, 8, 4, 1, 5, 9, 9, 1, 0, 4, 1, 8, 8, 2, 7, 6, 2, 3, 0, 7, 5, 4, 1, 0, 3, 5, 4, 5, 1, 7, 4, 2, 1, 7, 6, 0, 3, 7, 8, 6, 1, 1, 5, 8, 0, 4, 8, 8, 3, 5, 0, 7, 4, 2, 0, 0, 7, 6, 9, 8, 4, 7, 0, 0, 3, 0, 8, 1, 7, 8, 6, 2, 7, 8, 9, 1, 9
Offset: 0
Comments
The greatest possible minimum distance between 6 points in a unit square.
The solution was found by Ronald L. Graham and reported by Schaer (1965).
Examples
0.60092521257733154885320354457841599104188276230754...
References
- Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved Problems in Geometry, Springer, 1991, Section D1, p. 108.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.
Links
- J. Schaer, The densest packing of 9 circles in a square, Canadian Mathematical Bulletin, Vol. 8, No. 3 (1965), pp. 273-277.
- D. Würtz, M. Monagan, and R. Peikert, The history of packing circles in a square, Maple Technical Newsletter, Vol. 1 (1994), pp. 35-42; ResearchGate link.
- Index entries for algebraic numbers, degree 2.
Crossrefs
Programs
-
Mathematica
RealDigits[Sqrt[13] / 6, 10, 120][[1]]
-
PARI
list(len) = digits(floor(10^len*quadgen(52)/6));
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula
Extensions