cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A010503 Decimal expansion of 1/sqrt(2).

Original entry on oeis.org

7, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9, 3, 7, 6, 7, 1, 6, 3, 8, 2, 0, 7, 8, 6, 3, 6, 7, 5, 0, 6
Offset: 0

Views

Author

Keywords

Comments

The decimal expansion of sqrt(50) = 5*sqrt(2) = 7.0710678118654752440... gives essentially the same sequence.
Also real and imaginary part of the square root of the imaginary unit. - Alonso del Arte, Jan 07 2011
1/sqrt(2) = (1/2)^(1/2) = (1/4)^(1/4) (see the comments in A072364).
If a triangle has sides whose lengths form a harmonic progression in the ratio 1 : 1/(1 + d) : 1/(1 + 2d) then the triangle inequality condition requires that d be in the range -1 + 1/sqrt(2) < d < 1/sqrt(2). - Frank M Jackson, Oct 11 2011
Let s_2(n) be the sum of the base-2 digits of n and epsilon(n) = (-1)^s_2(n), the Thue-Morse sequence A010060, then Product_{n >= 0} ((2*n + 1)/(2*n + 2))^epsilon(n) = 1/sqrt(2). - Jonathan Vos Post, Jun 03 2012
The square root of 1/2 and thus it follows from the Pythagorean theorem that it is the sine of 45 degrees (and the cosine of 45 degrees). - Alonso del Arte, Sep 24 2012
Circumscribed sphere radius for a regular octahedron with unit edges. In electrical engineering, ratio of effective amplitude to peak amplitude of an alternating current/voltage. - Stanislav Sykora, Feb 10 2014
Radius of midsphere (tangent to edges) in a cube with unit edges. - Stanislav Sykora, Mar 27 2014
Positive zero of the Hermite polynomial of degree 2. - A.H.M. Smeets, Jun 02 2025

Examples

			0.7071067811865475...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Sections 1.1, 7.5.2, and 8.2, pp. 1-3, 468, 484, 487.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. A073084 (infinite tetration limit).
Platonic solids circumradii: A010527 (cube), A019881 (icosahedron), A179296 (dodecahedron), A187110 (tetrahedron).
Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A019863 (icosahedron), A239798 (dodecahedron).

Programs

  • Magma
    1/Sqrt(2); // Vincenzo Librandi, Feb 21 2016
  • Maple
    Digits:=100; evalf(1/sqrt(2)); Wesley Ivan Hurt, Mar 27 2014
  • Mathematica
    N[ 1/Sqrt[2], 200]
    RealDigits[1/Sqrt[2],10,120][[1]] (* Harvey P. Dale, Mar 25 2019 *)
  • PARI
    default(realprecision, 20080); x=10*(1/sqrt(2)); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b010503.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009
    

Formula

1/sqrt(2) = cos(Pi/4) = sqrt(2)/2. - Eric Desbiaux, Nov 05 2008
a(n) = 9 - A268682(n). As constants, this sequence is 1 - A268682. - Philippe Deléham, Feb 21 2016
From Amiram Eldar, Jun 29 2020: (Start)
Equals sin(Pi/4) = cos(Pi/4).
Equals Integral_{x=0..Pi/4} cos(x) dx. (End)
Equals (1/2)*A019884 + A019824 * A010527 = A019851 * A019896 + A019812 * A019857. - R. J. Mathar, Jan 27 2021
Equals hypergeom([-1/2, -3/4], [5/4], -1). - Peter Bala, Mar 02 2022
Limit_{n->oo} (sqrt(T(n+1)) - sqrt(T(n))) = 1/sqrt(2), where T(n) = n(n+1)/2 = A000217(n) is the triangular numbers. - Jules Beauchamp, Sep 18 2022
Equals Product_{k>=0} ((2*k+1)/(2*k+2))^((-1)^A000120(k)) (Woods, 1978). - Amiram Eldar, Feb 04 2024
From Stefano Spezia, Oct 15 2024: (Start)
Equals 1 + Sum_{k>=1} (-1)^k*binomial(2*k,k)/2^(2*k) [Newton].
Equal Product_{k>=1} 1 - 1/(4*(2*k - 1)^2). (End)
Equals Product_{k>=0} (1 - (-1)^k/(6*k+3)). - Amiram Eldar, Nov 22 2024

Extensions

More terms from Harry J. Smith, Jun 02 2009

A020761 Decimal expansion of 1/2.

Original entry on oeis.org

5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Real part of all nontrivial zeros of the Riemann zeta function (assuming the Riemann hypothesis to be true). - Alonso del Arte, Jul 02 2011
Radius of a sphere with surface area Pi. - Omar E. Pol, Aug 09 2012
Radius of the midsphere (tangent to the edges) in a regular octahedron with unit edges. Also radius of the inscribed sphere (tangent to faces) in a cube with unit edges. - Stanislav Sykora, Mar 27 2014
Construct a rectangle of maximal area inside an arbitrary triangle. The ratio of the rectangle's area to the triangle's area is 1/2. - Rick L. Shepherd, Jul 30 2014

Examples

			1/2 = 0.50000000000000...
		

Crossrefs

Cf. In platonic solids:
midsphere radii:
A020765 (tetrahedron),
A010503 (cube),
A019863 (icosahedron),
A239798 (dodecahedron);
insphere radii:
A020781 (tetrahedron),
A020763 (octahedron),
A179294 (icosahedron),
A237603 (dodecahedron).

Programs

  • Maple
    Digits:=100; evalf(1/2); # Wesley Ivan Hurt, Mar 27 2014
  • Mathematica
    RealDigits[1/2, 10, 128][[1]] (* Alonso del Arte, Dec 13 2013 *)
    LinearRecurrence[{1},{5,0},99] (* Ray Chandler, Jul 15 2015 *)
  • PARI
    { default(realprecision); x=1/2*10; for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) } \\ Felix Fröhlich, Jul 24 2014
    
  • PARI
    a(n) = 5*(n==0); \\ Michel Marcus, Jul 25 2014

Formula

Equals Sum_{k>=1} (1/3^k). Hence 1/2 = 0.1111111111111... in base 3.
Cosine of 60 degrees, i.e., cos(Pi/3).
-zeta(0), zeta being the Riemann function. - Stanislav Sykora, Mar 27 2014
a(0) = 5; a(n) = 0, n > 0. - Wesley Ivan Hurt, Mar 27 2014
a(n) = 5 * floor(1/(n + 1)). - Wesley Ivan Hurt, Mar 27 2014
Equals 2*A019824*A019884. - R. J. Mathar, Jan 17 2021

A019973 Decimal expansion of tangent of 75 degrees.

Original entry on oeis.org

3, 7, 3, 2, 0, 5, 0, 8, 0, 7, 5, 6, 8, 8, 7, 7, 2, 9, 3, 5, 2, 7, 4, 4, 6, 3, 4, 1, 5, 0, 5, 8, 7, 2, 3, 6, 6, 9, 4, 2, 8, 0, 5, 2, 5, 3, 8, 1, 0, 3, 8, 0, 6, 2, 8, 0, 5, 5, 8, 0, 6, 9, 7, 9, 4, 5, 1, 9, 3, 3, 0, 1, 6, 9, 0, 8, 8, 0, 0, 0, 3, 7, 0, 8, 1, 1, 4, 6, 1, 8, 6, 7, 5, 7, 2, 4, 8, 5, 7
Offset: 1

Views

Author

Keywords

Comments

An equivalent definition of this sequence: decimal expansion of x > 1 satisfying x^2 - 4*x + 1 = 0. - Arkadiusz Wesolowski, Nov 28 2011
An algebraic integer of degree 2 with minimal polynomial x^2 - 4*x + 1. - Charles R Greathouse IV, Oct 17 2016
Length of the second longest diagonal in a regular 12-gon with unit side. - Mohammed Yaseen, Dec 13 2020

Examples

			3.732050807568877293527446341505872366942805253810380628...
		

Crossrefs

Programs

Formula

Equals 2 + sqrt(3) = 2+A002194 = cotangent of 15 degrees. - Rick L. Shepherd, Jul 04 2004
Equals exp(arccosh(2)). - Amiram Eldar, Aug 07 2023
c^n = A001835(n) + (1 + sqrt(3)) * A001353(n) = A001075(n) + sqrt(3) * A001353(n); where c = 2 + sqrt(3). - Gary W. Adamson, Oct 14 2023
Equals lim_{n->oo} S(n, 4)/ S(n-1, 4), with the S-Chebyshev polynomial (see A049310) S(n, 4) = A001353(n+1). See the A001353 formula from Oct 06 2002 by Gregory V. Richardson. - Wolfdieter Lang, Nov 15 2023
Equals A019884 / A019824. - R. J. Mathar, Jan 12 2024
Equals 1/A019913. - Hugo Pfoertner, Mar 24 2024

Extensions

Checked by Neven Juric (neven.juric(AT)apis-it.hr), Feb 04 2008

A019824 Decimal expansion of sine of 15 degrees.

Original entry on oeis.org

2, 5, 8, 8, 1, 9, 0, 4, 5, 1, 0, 2, 5, 2, 0, 7, 6, 2, 3, 4, 8, 8, 9, 8, 8, 3, 7, 6, 2, 4, 0, 4, 8, 3, 2, 8, 3, 4, 9, 0, 6, 8, 9, 0, 1, 3, 1, 9, 9, 3, 0, 5, 1, 3, 8, 1, 4, 0, 0, 3, 2, 0, 7, 3, 1, 5, 0, 5, 6, 9, 7, 4, 7, 4, 8, 8, 0, 1, 9, 9, 6, 9, 2, 2, 3, 6, 7, 9, 7, 4, 6, 9, 4, 2, 4, 9, 6, 6, 5
Offset: 0

Views

Author

Keywords

Comments

Also the imaginary part of i^(1/6). - Stanislav Sykora, Apr 25 2012

Examples

			0.258819045102520762348898837624048328349068901319930513814003207315...
		

Crossrefs

Programs

Formula

Equals (sqrt(3)-1)/(2*sqrt(2)) = (A002194 -1) * A020765 = sin(Pi/12). - R. J. Mathar, Jun 18 2006
Equals 2F1(9/8,-1/8;1/2;3/4) / 2 = - 2F1(11/8,-3/8;1/2;3/4) / 2 = cos(5*Pi/12). - R. J. Mathar, Oct 27 2008
Equals sqrt(2 - sqrt(3))/2 = (1/2) * A101263. - Amiram Eldar, Aug 05 2020
This^2 + A019884^2=1. - R. J. Mathar, Aug 31 2025
Smallest positive of the 4 real-valued roots of 16*x^4-16*x^2+1=0. - R. J. Mathar, Aug 31 2025

A188887 Decimal expansion of sqrt(2 + sqrt(3)).

Original entry on oeis.org

1, 9, 3, 1, 8, 5, 1, 6, 5, 2, 5, 7, 8, 1, 3, 6, 5, 7, 3, 4, 9, 9, 4, 8, 6, 3, 9, 9, 4, 5, 7, 7, 9, 4, 7, 3, 5, 2, 6, 7, 8, 0, 9, 6, 7, 8, 0, 1, 6, 8, 0, 9, 1, 0, 0, 8, 0, 4, 6, 8, 6, 1, 5, 2, 6, 2, 0, 8, 4, 6, 4, 2, 7, 9, 5, 9, 7, 1, 1, 0, 3, 2, 6, 9, 5, 1, 2, 3, 4, 8, 3, 7, 1, 6, 1, 4, 0, 9, 0, 3, 7, 7, 6, 8, 0, 4, 2, 2, 3, 7, 2, 8, 7, 6, 3, 2, 4, 3, 0, 7, 4, 8, 9, 1, 8, 5, 0, 7, 5, 7
Offset: 1

Views

Author

Clark Kimberling, Apr 12 2011

Keywords

Comments

Decimal expansion of the length/width ratio of a sqrt(2)-extension rectangle. See A188640 for definitions of shape and r-extension rectangle.
A sqrt(2)-extension rectangle matches the continued fraction [1,1,13,1,2,15,10,1,18,1,1,21,,...] (A188888) for the shape L/W = sqrt(2 + sqrt(3)). This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,1,...]. Specifically, for the sqrt(2)-extension rectangle, 1 square is removed first, then 1 square, then 13 squares, then 1 square, ..., so that the original rectangle of shape sqrt(2 + sqrt(3)) is partitioned into an infinite collection of squares.
sqrt(2 + sqrt(3)) is also the shape of the greater sqrt(6)-contraction rectangle; see A188738.
This constant is also the length of the Steiner span of three vertices of a unit square. - Jean-François Alcover, May 22 2014
It is also the larger positive coordinate of (symmetrical) intersection points created by x^2 + y^2 = 4 circle and y = 1/x hyperbola. The smaller coordinate is A101263. - Leszek Lezniak, Sep 18 2018
Length of the shortest diagonal in a regular 12-gon with unit side. - Mohammed Yaseen, Nov 12 2020

Examples

			1.931851652578136573499486399457794735267809678016809...
		

Crossrefs

Programs

  • Magma
    Sqrt(2 + Sqrt(3)); // G. C. Greubel, Apr 10 2018
  • Mathematica
    r = 2^(1/2); t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]
    RealDigits[Sqrt[2 + Sqrt[3]], 10, 100][[1]] (* G. C. Greubel, Apr 10 2018 *)
  • PARI
    sqrt(2 + sqrt(3)) \\ G. C. Greubel, Apr 10 2018
    

Formula

Equals (sqrt(6) + sqrt(2))/2.
Equals exp(asinh(cos(Pi/4))). - Geoffrey Caveney, Apr 23 2014
Equals cos(Pi/4) + sqrt(1 + cos(Pi/4)^2). - Geoffrey Caveney, Apr 23 2014
Equals i^(1/6) + i^(-1/6). - Gary W. Adamson, Jul 07 2022
Equals the largest root of x - 1/x = sqrt(2) and of x^2 + 1/x^2 = 4. - Gary W. Adamson, Jun 12 2023
Equals Product_{k>=0} ((12*k + 2)*(12*k + 10))/((12*k + 1)*(12*k + 11)). - Antonio Graciá Llorente, Feb 24 2024
From Amiram Eldar, Nov 23 2024: (Start)
Equals A214726 / 2 = 2 * A019884 = 1 / A101263 = exp(A329247) = A217870^2 = sqrt(A019973).
Equals Product_{k>=1} (1 - (-1)^k/A091998(k)). (End)

A019913 Decimal expansion of tangent of 15 degrees.

Original entry on oeis.org

2, 6, 7, 9, 4, 9, 1, 9, 2, 4, 3, 1, 1, 2, 2, 7, 0, 6, 4, 7, 2, 5, 5, 3, 6, 5, 8, 4, 9, 4, 1, 2, 7, 6, 3, 3, 0, 5, 7, 1, 9, 4, 7, 4, 6, 1, 8, 9, 6, 1, 9, 3, 7, 1, 9, 4, 4, 1, 9, 3, 0, 2, 0, 5, 4, 8, 0, 6, 6, 9, 8, 3, 0, 9, 1, 1, 9, 9, 9, 6, 2, 9, 1, 8, 8, 5, 3, 8, 1, 3, 2, 4, 2, 7, 5, 1, 4, 2, 4
Offset: 0

Views

Author

Keywords

Comments

Also, 2 - sqrt(3) = cotangent of 75 degrees. An equivalent definition of this sequence: decimal expansion of x < 1 satisfying x^2 - 4*x + 1 = 0. - Arkadiusz Wesolowski, Nov 29 2011
Multiplied by -1 (that is, -2 + sqrt(3)), this is one of three real solutions to x^3 = 15x + 4. The other two are 4 and -2 - sqrt(3), all of which can be found with Viete's formula. - Alonso del Arte, Dec 15 2012
Wentworth (1903) shows how to compute the tangent of 15 degrees to five decimal places by the laborious process of adding up the first few terms of Pi/12 + Pi^3/5184 + 2Pi^5/3732480 + 17Pi^7/11287019520 + ... - Alonso del Arte, Mar 13 2015
A quadratic integer. - Charles R Greathouse IV, Aug 27 2017
This is the radius of the largest sphere that can be placed in the space between a sphere of radius 1 and the corners of its circumscribing cube. - Amiram Eldar, Jul 11 2020

Examples

			0.2679491924311227064725536...
		

References

  • Paul J. Nahin, An Imaginary Tale: The Story of sqrt(-1). Princeton, New Jersey: Princeton University Press (1988): 22 - 23.

Crossrefs

Cf. A002194 (sqrt(3)).

Programs

Formula

Equals Sum_{k>=1} binomial(2*k,k)/(6^k*(k+1)). - Amiram Eldar, Jul 11 2020
Equals exp(-arccosh(2)). - Amiram Eldar, Jul 06 2023
tan(Pi/12) = A019824 / A019884. - R. J. Mathar, Aug 31 2025

A120683 Decimal expansion of secant of 15 degrees (cosecant of 75 degrees).

Original entry on oeis.org

1, 0, 3, 5, 2, 7, 6, 1, 8, 0, 4, 1, 0, 0, 8, 3, 0, 4, 9, 3, 9, 5, 5, 9, 5, 3, 5, 0, 4, 9, 6, 1, 9, 3, 3, 1, 3, 3, 9, 6, 2, 7, 5, 6, 0, 5, 2, 7, 9, 7, 2, 2, 0, 5, 5, 2, 5, 6, 0, 1, 2, 8, 2, 9, 2, 6, 0, 2, 2, 7, 8, 9, 8, 9, 9, 5, 2, 0, 7, 9, 8, 7, 6, 8, 9, 4, 7, 1, 8, 9, 8, 7, 7, 6, 9, 9, 8, 6, 6, 2, 0, 8, 3, 5, 8
Offset: 1

Views

Author

Rick L. Shepherd, Jun 24 2006

Keywords

Comments

Side length of the largest equilateral triangle that can be inscribed in a unit square (as stated in MathWorld/Weisstein link).
A quartic integer. - Charles R Greathouse IV, Aug 27 2017

Examples

			1.03527618041008304939559535049619331339627560527972...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.

Crossrefs

Programs

Formula

Equals sec(Pi/12) = sec(A019679) = sqrt(6) - sqrt(2) = A010464 - A002193 = csc(5*Pi/12) = 1/sin(5*Pi/12) = 1/sin(10*A019691) = 1/A019884.
Equals Product_{k >= 1} 1/(1 - 1/(36*(2*k - 1)^2)). - Antonio Graciá Llorente, Mar 20 2024
From Amiram Eldar, Nov 24 2024: (Start)
Equals 2*A101263.
Equals Product_{k>=1} (1 - (-1)^k/A092242(k)). (End)
Smallest positive of the 4 real-valued roots of x^4-16*x^2+16=0. - R. J. Mathar, Aug 31 2025

A232735 Decimal expansion of the real part of I^(1/7), or cos(Pi/14).

Original entry on oeis.org

9, 7, 4, 9, 2, 7, 9, 1, 2, 1, 8, 1, 8, 2, 3, 6, 0, 7, 0, 1, 8, 1, 3, 1, 6, 8, 2, 9, 9, 3, 9, 3, 1, 2, 1, 7, 2, 3, 2, 7, 8, 5, 8, 0, 0, 6, 1, 9, 9, 9, 7, 4, 3, 7, 6, 4, 8, 0, 7, 9, 5, 7, 5, 0, 8, 7, 6, 4, 5, 9, 3, 1, 6, 3, 4, 4, 0, 3, 7, 9, 3, 7, 0, 0, 1, 1, 2, 4, 5, 8, 1, 2, 0, 7, 3, 6, 9, 2, 5, 1, 6, 4, 0, 1, 4
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding imaginary part is in A232736.
Root of the equation -7 + 56*x^2 - 112*x^4 + 64*x^6 = 0. - Vaclav Kotesovec, Apr 04 2021

Examples

			0.974927912181823607018131682993931217232785800619997437648...
		

Crossrefs

Cf. A232736 (imaginary part), A010503 (real(I^(1/2))), A010527 (real(I^(1/3))), A144981 (real(I^(1/4))), A019881 (real(I^(1/5))), A019884 (real(I^(1/6))), A232737 (real(I^(1/8))), A019889 (real(I^(1/9))), A019890 (real(I^(1/10))).

Programs

  • Magma
    R:= RealField(100); Cos(Pi(R)/14); // G. C. Greubel, Sep 19 2022
    
  • Mathematica
    RealDigits[Cos[Pi/14],10,120][[1]] (* Harvey P. Dale, Dec 15 2018 *)
  • SageMath
    numerical_approx(cos(pi/14), digits=120) # G. C. Greubel, Sep 19 2022

Formula

2*this^2 -1 = A073052. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/14,1/14;1/2;1) . - R. J. Mathar, Aug 31 2025

A375193 Decimal expansion of the apothem (inradius) of a regular 12-gon with unit side length.

Original entry on oeis.org

1, 8, 6, 6, 0, 2, 5, 4, 0, 3, 7, 8, 4, 4, 3, 8, 6, 4, 6, 7, 6, 3, 7, 2, 3, 1, 7, 0, 7, 5, 2, 9, 3, 6, 1, 8, 3, 4, 7, 1, 4, 0, 2, 6, 2, 6, 9, 0, 5, 1, 9, 0, 3, 1, 4, 0, 2, 7, 9, 0, 3, 4, 8, 9, 7, 2, 5, 9, 6, 6, 5, 0, 8, 4, 5, 4, 4, 0, 0, 0, 1, 8, 5, 4, 0, 5, 7, 3, 0, 9
Offset: 1

Views

Author

Paolo Xausa, Aug 04 2024

Keywords

Comments

Apart from the first digit the same as A010527.

Examples

			1.8660254037844386467637231707529361834714026269...
		

Crossrefs

Cf. A188887 (circumradius), A375194 (sagitta), A178809 (area).
Cf. apothem of other polygons with unit side length: A020769 (triangle), A020761 (square), A375067 (pentagon), A010527 (hexagon), A374971 (heptagon), A174968 (octagon), A375152 (9-gon), A179452 (10-gon), A375191 (11-gon).

Programs

Formula

Equals cot(Pi/12)/2 = (2 + sqrt(3))/2 = A019973/2.
Equals 1/(2*tan(Pi/12)) = 1/(2*A019913).
Equals A188887*cos(Pi/12) = A188887*A019884.
Equals A188887 - A375194.
Equals A332133^2 = 2 - A375069. - Hugo Pfoertner, Aug 04 2024

A214726 Decimal expansion of the perimeter of Cairo and Prismatic tiles.

Original entry on oeis.org

3, 8, 6, 3, 7, 0, 3, 3, 0, 5, 1, 5, 6, 2, 7, 3, 1, 4, 6, 9, 9, 8, 9, 7, 2, 7, 9, 8, 9, 1, 5, 5, 8, 9, 4, 7, 0, 5, 3, 5, 6, 1, 9, 3, 5, 6, 0, 3, 3, 6, 1, 8, 2, 0, 1, 6, 0, 9, 3, 7, 2, 3, 0, 5, 2, 4, 1, 6, 9, 2, 8, 5, 5, 9, 1, 9, 4, 2, 2, 0, 6, 5, 3, 9, 0, 2, 4, 6, 9, 6, 7, 4, 3, 2, 2, 8, 1, 8, 0, 7, 5, 5
Offset: 1

Views

Author

Jonathan Vos Post, Jul 26 2012

Keywords

Comments

An algebraic integer with degree 4 and minimal polynomial x^4 - 16x^2 + 16. - Charles R Greathouse IV, Apr 21 2016
Length of the longest diagonal in a regular 12-gon with unit side. - Mohammed Yaseen, Dec 13 2020

Examples

			3.8637033051562731469989727989....
		

Crossrefs

Programs

Formula

Equals 2*(sqrt(2+sqrt(3))).
Equals csc(Pi/12). - Amiram Eldar, May 28 2021
Equals sqrt(2) + sqrt(6). - Vaclav Kotesovec, May 28 2021
Equals Product_{k>=1} (25 - 144*k^2)/(100 - 144*k^2). - Antonio Graciá Llorente, Jul 13 2024
Equals 4 * A019884. - Alois P. Heinz, Jul 14 2024

Extensions

a(100) corrected by Georg Fischer, Jul 12 2021
Showing 1-10 of 12 results. Next