cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A063374 a(n) = Fibonacci(n!).

Original entry on oeis.org

1, 1, 1, 8, 46368, 5358359254990966640871840, 1323171012053243520828784042795469593341319770463238313551473338336502410952765153371119398122747569819754164672344667591018783803781288766524146031040
Offset: 0

Views

Author

Jason Earls, Jul 23 2001

Keywords

Crossrefs

Programs

Formula

a(n) = A000045(A000142(n)).

A371323 Decimal expansion of Sum_{k>=1} 1/(2^k * Lucas(k!)).

Original entry on oeis.org

5, 9, 0, 2, 7, 8, 3, 8, 0, 5, 8, 2, 5, 0, 7, 6, 2, 4, 8, 1, 0, 0, 4, 9, 5, 3, 4, 4, 0, 3, 0, 2, 2, 2, 6, 1, 4, 0, 4, 6, 3, 9, 4, 8, 3, 8, 7, 2, 9, 3, 2, 5, 1, 3, 5, 1, 9, 3, 0, 3, 4, 8, 8, 2, 7, 1, 3, 6, 9, 3, 5, 2, 7, 2, 9, 6, 0, 2, 1, 3, 8, 1, 9, 2, 7, 1, 2, 1, 3, 7, 7, 4, 2, 8, 2, 5, 6, 9, 0, 6, 0, 8, 2, 1, 9
Offset: 0

Views

Author

Amiram Eldar, Mar 19 2024

Keywords

Comments

The transcendence of this constant was proved by Nyblom (2001).

Examples

			0.59027838058250762481004953440302226140463948387293...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[1/(2^k * LucasL[k!]), {k, 1, 10}], 10, 120][[1]]
  • PARI
    suminf(k = 1, 1/(2^k * (fibonacci(k!-1)+fibonacci(k!+1))))

A371325 Decimal expansion of Sum_{k>=1} (-1)^(k+1)/(2^k * Lucas(k!)).

Original entry on oeis.org

4, 2, 3, 6, 1, 0, 5, 0, 8, 3, 0, 6, 3, 8, 1, 2, 6, 4, 0, 7, 8, 8, 3, 9, 3, 5, 9, 7, 0, 2, 1, 7, 4, 1, 5, 5, 3, 3, 6, 7, 2, 6, 6, 9, 9, 2, 6, 8, 7, 2, 6, 0, 6, 1, 7, 4, 0, 4, 6, 6, 9, 1, 7, 4, 7, 4, 7, 6, 6, 9, 2, 0, 9, 3, 4, 9, 4, 7, 9, 7, 1, 2, 8, 4, 9, 2, 3, 5, 7, 9, 1, 3, 7, 3, 4, 6, 1, 1, 5, 2, 3, 9, 9, 4, 5
Offset: 0

Views

Author

Amiram Eldar, Mar 19 2024

Keywords

Comments

The transcendence of this constant was proved by Nyblom (2004).

Examples

			0.42361050830638126407883935970217415533672669926872...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-Sum[(-1/2)^k/LucasL[k!], {k, 1, 10}], 10, 120][[1]]
  • PARI
    suminf(k = 1, -(-1/2)^k/(fibonacci(k!-1)+fibonacci(k!+1)))

A371137 Decimal expansion of Sum_{k>=1} 1/Lucas(k!).

Original entry on oeis.org

1, 3, 8, 8, 8, 9, 8, 5, 3, 3, 7, 6, 4, 5, 6, 6, 4, 4, 1, 4, 0, 5, 2, 3, 7, 0, 3, 6, 6, 2, 3, 2, 6, 0, 8, 4, 9, 7, 3, 8, 4, 9, 4, 5, 4, 0, 4, 3, 3, 5, 2, 2, 1, 5, 1, 7, 2, 0, 3, 5, 2, 3, 9, 1, 6, 4, 4, 3, 3, 3, 1, 6, 6, 3, 2, 3, 3, 6, 8, 4, 2, 0, 2, 3, 7, 8, 1, 3, 2, 7, 2, 2, 5, 9, 9, 1, 8, 8, 2, 9, 8, 5, 0, 1, 6
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2024

Keywords

Comments

Nyblom (2000) proved that this constant is transcendental.

Examples

			1.38889853376456644140523703662326084973849454043352...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[1/LucasL[k!], {k, 1, 10}], 10, 120][[1]]
  • PARI
    suminf(k = 1, 1/(fibonacci(k!-1)+fibonacci(k!+1)))

Formula

Equals Sum_{k>=1} 1/A101293(k).
Showing 1-4 of 4 results.