cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A104462 Convert the binary strings in A101305 to decimal.

Original entry on oeis.org

0, 2, 20, 328, 10512, 672800, 86118464, 22046326912, 11287719379200, 11558624644301312, 23672063271529088000, 96960771160183144450048, 794302637344220319334797312, 13013854410247705711981319168000, 426437981314996820770203866497040384
Offset: 0

Views

Author

Jorge Coveiro, Apr 23 2005

Keywords

Comments

The a(n)-th composition in standard order is (2,3,..,n+1), where the k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. Moreover, the binary indices of a(n) are row n of A193973. Including 1 gives A164894, reverse A246534. - Gus Wiseman, Jun 28 2022

Examples

			From _Gus Wiseman_, Jun 28 2022: (Start)
The terms together with their standard compositions begin:
      0: ()
      2: (2)
     20: (2,3)
    328: (2,3,4)
  10512: (2,3,4,5)
(End)
		

Crossrefs

Cf. A101305.
A version for prime indices is A070826.

Programs

  • Maple
    convert(10,decimal,binary); convert(10100,decimal,binary); convert(101001000,decimal,binary); convert(10100100010000,decimal,binary); convert(10100100010000100000,decimal,binary);
  • Mathematica
    stcinv[q_]:=Total[2^Accumulate[Reverse[q]]]/2;
    Table[stcinv[Range[2,n]],{n,8}] (* Gus Wiseman, Jun 28 2022 *)
  • Python
    def a(n): return 0 if n==0 else int("".join("1"+"0"*(i+1) for i in range(n)), 2)
    print([a(n) for n in range(15)]) # Michael S. Branicky, Jun 28 2022

Extensions

a(14) and beyond from Michael S. Branicky, Jun 28 2022

A386552 Concatenate powers of 10.

Original entry on oeis.org

1, 110, 110100, 1101001000, 110100100010000, 110100100010000100000, 1101001000100001000001000000, 110100100010000100000100000010000000, 110100100010000100000100000010000000100000000, 1101001000100001000001000000100000001000000001000000000
Offset: 0

Views

Author

Jason Bard, Jul 25 2025

Keywords

Comments

Binary version of A045507. Base-2 representation of A164894.
Concatenate first A000217(n+1) terms of A010054.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<0, 0, parse(cat(a(n-1), 10^n)))
        end:
    seq(a(n), n=0..10);  # Alois P. Heinz, Jul 28 2025
  • Mathematica
    a[0] = 1; a[n_] := a[n - 1]*10^(n+1) + 10^n; Table[a[n], {n, 0, 9}]
  • Python
    def A386552(n): return 10**n*sum(10**(k*((n<<1)-k+1)>>1) for k in range(n+1)) # Chai Wah Wu, Aug 05 2025

Formula

a(n) = Sum_{k=1..n+1} 10^A133082(k,n+2).
a(n) = A101305(n) + 10^A000096(n).
For n >= 1, a(n) = 10^(n+1)*a(n-1)+10^n.
Number of digits in a(n) is A000217(n+1).
Showing 1-2 of 2 results.