cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101338 Antidiagonal sums in A101321.

Original entry on oeis.org

1, 2, 4, 9, 20, 41, 77, 134, 219, 340, 506, 727, 1014, 1379, 1835, 2396, 3077, 3894, 4864, 6005, 7336, 8877, 10649, 12674, 14975, 17576, 20502, 23779, 27434, 31495, 35991, 40952, 46409, 52394, 58940, 66081, 73852, 82289, 91429, 101310, 111971
Offset: 0

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Dec 24 2004

Keywords

Comments

Equals binomial transform of [1, 1, 1, 2, 1, 0, 0, 0, ...]. Example: a(5) = 20 = [1, 1, 1, 2, 1] dot [1, 4, 6, 4, 1] = (1 + 4 + 6 + 8 + 1). - Gary W. Adamson, Aug 25 2010

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-3*x+4*x^2-x^3)/(1-x)^5,{x,0,40}],x] (* Vincenzo Librandi, Mar 24 2012 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,2,4,9,20},50] (* Harvey P. Dale, May 21 2013 *)

Formula

a(n) = n^4/24 + n^3/12 - n^2/24 + 11*n/12 + 1.
G.f.: (1-3*x+4*x^2-x^3)/(1-x)^5. - Colin Barker, Mar 22 2012
a(0)=1, a(1)=2, a(2)=4, a(3)=9, a(4)=20, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, May 21 2013
a(n) = A000127(n+1) + A000292(n-2). - Bruce J. Nicholson, Jan 06 2019