cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A101321 Table T(n,m) = 1 + n*m*(m+1)/2 read by antidiagonals: centered polygonal numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 7, 4, 1, 1, 11, 13, 10, 5, 1, 1, 16, 21, 19, 13, 6, 1, 1, 22, 31, 31, 25, 16, 7, 1, 1, 29, 43, 46, 41, 31, 19, 8, 1, 1, 37, 57, 64, 61, 51, 37, 22, 9, 1, 1, 46, 73, 85, 85, 76, 61, 43, 25, 10, 1, 1, 56, 91, 109, 113, 106, 91, 71, 49, 28, 11, 1, 1, 67
Offset: 0

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Dec 24 2004

Keywords

Comments

Row n gives the centered figurate numbers of the n-gon.
Antidiagonal sums are in A101338.

Examples

			The upper left corner of the infinite array T is
|0| 1   1   1   1   1   1   1   1   1   1 ... A000012
|1| 1   2   4   7  11  16  22  29  37  46 ... A000124
|2| 1   3   7  13  21  31  43  57  73  91 ... A002061
|3| 1   4  10  19  31  46  64  85 109 136 ... A005448
|4| 1   5  13  25  41  61  85 113 145 181 ... A001844
|5| 1   6  16  31  51  76 106 141 181 226 ... A005891
|6| 1   7  19  37  61  91 127 169 217 271 ... A003215
|7| 1   8  22  43  71 106 148 197 253 316 ... A069099
|8| 1   9  25  49  81 121 169 225 289 361 ... A016754
|9| 1  10  28  55  91 136 190 253 325 406 ... A060544
		

Crossrefs

Programs

Formula

T(n,2) = A016777(n). T(n,3) = A016921(n). T(n,4) = A017281(n).
T(10,m) = A062786(m+1).
T(11,m) = A069125(m+1).
T(12,m) = A003154(m+1).
T(13,m) = A069126(m+1).
T(14,m) = A069127(m+1).
T(15,m) = A069128(m+1).
T(16,m) = A069129(m+1).
T(17,m) = A069130(m+1).
T(18,m) = A069131(m+1).
T(19,m) = A069132(m+1).
T(20,m) = A069133(m+1).
T(n+1,m) = T(n,m) + m*(m+1)/2. - Gary W. Adamson and Michel Marcus, Oct 13 2015

Extensions

Edited by R. J. Mathar, Oct 21 2009

A154322 a(n) = 1 + n + binomial(n+3,5).

Original entry on oeis.org

1, 2, 4, 10, 26, 62, 133, 260, 471, 802, 1298, 2014, 3016, 4382, 6203, 8584, 11645, 15522, 20368, 26354, 33670, 42526, 53153, 65804, 80755, 98306, 118782, 142534, 169940, 201406, 237367, 278288, 324665, 377026, 435932, 501978, 575794, 658046, 749437, 850708
Offset: 0

Views

Author

Paul Barry, Jan 07 2009

Keywords

Comments

Row sums of number triangle A113582.
It appears that the sequence is the pairwise sum of terms in A101338 and A000389 with offsets as follows:
1, 2, 4, 10, 26, 62, 133, 260, 471, 802, 1298, ... =
1, 2, 4, 9, 20, 41, 77, 134, 219, 340, 506, ... +
0, 0, 0, 1, 6, 21, 56, 126, 252, 462, 792, ...
- Gary W. Adamson, Oct 08 2015

Crossrefs

Programs

  • Magma
    [1+n+Binomial(n+3,5) : n in [0..50]]; // Wesley Ivan Hurt, Oct 08 2015
    
  • Magma
    I:=[1,2,4,10,26,62]; [n le 6 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+6*Self(n-5)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Oct 09 2015
    
  • Maple
    A154322:=n->1+n+binomial(n+3,5): seq(A154322(n), n=0..50); # Wesley Ivan Hurt, Oct 08 2015
  • Mathematica
    CoefficientList[Series[(1 - 4*x + 7*x^2 - 4*x^3 + x^4)/(1 - x)^6, {x, 0, 40}], x] (* Wesley Ivan Hurt, Oct 08 2015 *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 2, 4, 10, 26, 62}, 50] (* Vincenzo Librandi, Oct 09 2015 *)
     Table[ (n + 1)*(n^4 + 4*n^3 + n^2 - 6*n + 120)/120 , {n, 0, 25}] (* G. C. Greubel, Sep 10 2016 *)
    Table[1+n+Binomial[n+3,5],{n,0,40}] (* Harvey P. Dale, Jan 19 2023 *)
  • PARI
    Vec((1-4*x+7*x^2-4*x^3+x^4)/(1-x)^6 + O(x^100)) \\ Altug Alkan, Oct 18 2015

Formula

G.f.: (1 - 4*x + 7*x^2 - 4*x^3 + x^4)/(1-x)^6;
a(n) = n + 1 + Sum_{k=0..n} binomial(k+1,2) * binomial(n-k+1,2).
a(n) = (n+1)*(n^4 +4*n^3 +n^2 -6*n +120)/120.
a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6) for n>5. - Wesley Ivan Hurt, Oct 08 2015
E.g.f.: (1/120)*(120 + 120*x + 60*x^2 + 60*x^3 + 15*x^4 + x^5)*exp(x). - G. C. Greubel, Sep 10 2016
Showing 1-2 of 2 results.