cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A337455 Numbers of the form m + bigomega(m) with m a positive integer.

Original entry on oeis.org

1, 3, 4, 6, 8, 11, 12, 14, 15, 16, 17, 18, 20, 21, 23, 24, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 44, 45, 47, 48, 51, 53, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 84, 85, 87, 88, 89, 90, 92, 93
Offset: 1

Views

Author

Nathan J. McDougall, Aug 27 2020

Keywords

Comments

If a(n) = m + A001222(m) then (a(n) - m) <= log(a(n))/log(2).
It appears that a(n)/n may converge to a constant around ~ 1.49.

Examples

			a(7) = 10 + A001222(10) = 10 + 2 = 12
		

Crossrefs

Cf. A001222 (bigomega), A064800, A358973.
Numbers of the form k^n+n where k is prime are subsequences: A006127 (k=2), A104743 (k=3), A104745 (k=5), A226199 (k=7), A226737 (k=11).
Subsequences include A008864, A101340, and A160649 (excluding the first term).

Programs

  • Mathematica
    m = 100; Select[Union @ Table[n + PrimeOmega[n], {n, 1, m}], # <= m &] (* Amiram Eldar, Aug 28 2020 *)
  • PARI
    upto(limit)=Set(select(t->t<=limit, apply(m->m+bigomega(m), [1..limit]))) \\ Andrew Howroyd, Aug 27 2020
    
  • PARI
    list(lim)=my(v=List()); forfactored(n=1, lim\1-1, my(t=n[1]+bigomega(n)); if(t<=lim, listput(v, t))); Set(v) \\ Charles R Greathouse IV, Dec 07 2022

Formula

Kucheriaviy proves that a(n) << n log log n and conjectures that a(n) ≍ n, that is, these numbers have positive lower density. - Charles R Greathouse IV, Dec 07 2022

A345265 a(n) = Sum_{d|n} n^rad(d).

Original entry on oeis.org

1, 6, 30, 36, 3130, 46914, 823550, 200, 1467, 10000100110, 285311670622, 5973996, 302875106592266, 11112006930971730, 437893890381622140, 1040, 827240261886336764194, 68036454, 1978419655660313589123998, 20480003200820, 5842587018385982523182222244, 341427877364220141714948135418
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 12 2021

Keywords

Examples

			a(8) = Sum_{d|8} 8^rad(d) = 8^1 + 8^2 + 8^2 + 8^2 = 200.
		

Crossrefs

Cf. A007947 (rad), A101340.

Programs

  • Mathematica
    Table[Sum[(1 - Ceiling[n/i] + Floor[n/i]) n^Product[k^((PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[i/k] + Floor[i/k])), {k, i}], {i, n}], {n, 30}]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]);
    a(n) = sumdiv(n, d, n^rad(d)); \\ Michel Marcus, Jun 12 2021

Formula

a(p) = Sum_{d|p} p^rad(d) = p^1 + p^p = p^p + p, for p prime.
Showing 1-2 of 2 results.