A101361 a(1) = a(2) = 1; for n > 2, a(n) = Knuth's Fibonacci (or circle) product "a(n-1) o a(n-2)".
1, 1, 3, 8, 55, 987, 121393, 267914296, 72723460248141, 43566776258854844738105, 7084593923980518516849609894969925639, 690168906931029935139391829792095612517948949963798093315456
Offset: 1
Examples
1o1 = 3, 1o3 = 8, 3o8 = 55, ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..17
- D. E. Knuth, Fibonacci multiplication, Appl. Math. Lett. 1 (1988), 57-60.
Programs
-
Maple
with(combinat); f:=n->fibonacci(2*fibonacci(n)); # second Maple program: F:= n-> (<<0|1>, <1|1>>^n)[1, 2]: a:= n-> F(2*F(n)): seq(a(n), n=1..12); # Alois P. Heinz, Jan 20 2017
-
Mathematica
Table[ Fibonacci[2Fibonacci[n]], {n, 12}] (* Robert G. Wilson v, Feb 12 2005 *)
-
PARI
a(n)=if(n<1,0,fibonacci(2*fibonacci(n)))
Formula
a(n) = Fibonacci(2*Fibonacci(n)).
Third-order nonlinear recursion: a(0)=1, a(1)=1, a(2)=3, a(n)=(a(n-1)^2 - a(n-2)^2)/a(n-3). - T. D. Noe, Mar 17 2009
Extensions
Formula and more terms from Michael Somos, Feb 03 2005