A101384 a(n) = n*(n-1)^3*(n^2-n-1)/2.
0, 0, 1, 60, 594, 3040, 10875, 30996, 75460, 163584, 324405, 599500, 1046166, 1740960, 2783599, 4301220, 6453000, 9435136, 13486185, 18892764, 25995610, 35196000, 46962531, 61838260, 80448204, 103507200, 131828125, 166330476, 208049310, 258144544, 317910615
Offset: 0
References
- T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Cf. A062392.
Programs
-
Magma
[n*(n-1)^3*(n^2-n-1)/2: n in [0..40]]; // Vincenzo Librandi, Jun 15 2011
-
Maple
A101384:= n-> n*(n-1)^3*(n^2 -n -1)/2: seq(A101384(n), n=0..35); # G. C. Greubel, Mar 11 2021
-
Mathematica
Table[n*(n-1)^3*(n^2 -n -1)/2, {n, 0, 35}] (* G. C. Greubel, Mar 11 2021 *)
-
Sage
[n*(n-1)^3*(n^2 -n -1)/2 for n in (0..35)] # G. C. Greubel, Mar 11 2021
Formula
G.f.: x^2*(1 + 53*x + 195*x^2 + 107*x^3 + 4*x^4)/(1 - x)^7. - Ilya Gutkovskiy, Feb 24 2017
E.g.f.: x^2*(1 + 19*x + 30*x^2 + 11*x^3 + x^4)*exp(x)/2. - G. C. Greubel, Mar 11 2021