A230006
Numbers k such that sigma(k) + phi(k) = reversal(k) + 1.
Original entry on oeis.org
1, 37, 225, 397, 11112722, 1309286244182
Offset: 1
sigma(37)+phi(37) = 38+36 = 73+1 = reversal(37)+1.
-
r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Do[If[DivisorSigma[1, n] + EulerPhi[n] == r[n]+1, Print[n]], {n, 1000000000}]
A101849
Indices of primes in sequence defined by A(0) = 37, A(n) = 10*A(n-1) + 27 for n > 0.
Original entry on oeis.org
0, 1, 13, 19, 29, 43, 65, 259, 871, 8845, 26743, 57505, 98471, 106891
Offset: 1
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 20 2004
397 is prime, hence 1 is a term.
- Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
-
Select[Range[0, 1000], PrimeQ[(360*10^# - 27)/9] &] (* Robert Price, Mar 17 2015 *)
-
a=37;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+27)
-
for(n=0,1500,if(isprime((360*10^n-27)/9),print1(n,",")))
8845 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
Showing 1-2 of 2 results.
Comments