cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A101427 Number of different cuboids with volume (pq)^n, where p,q are distinct prime numbers.

Original entry on oeis.org

1, 2, 8, 19, 42, 78, 139, 224, 350, 517, 744, 1032, 1405, 1862, 2432, 3115, 3942, 4914, 6067, 7400, 8954, 10729, 12768, 15072, 17689, 20618, 23912, 27571, 31650, 36150, 41131, 46592, 52598, 59149, 66312, 74088, 82549, 91694, 101600, 112267, 123774
Offset: 0

Views

Author

Anthony C Robin, Jan 17 2005

Keywords

Comments

Subsequence of A034836, which gives the number of cuboids for volume n.

Crossrefs

Column k=3 of A277239.

Programs

  • Mathematica
    a[n_] := Switch[Mod[n, 6], 0, n+1, 1|5, 3n/4 + 7/24, 2|4, n+2/3, 3, 3n/4 + 5/8] + n^4/24 + n^3/4 + 2n^2/3; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 06 2016, after Frederic Solbes' formula *)
  • PARI
    a(n) = if (n % 3, ((n+2)^2*(n+1)^2 + 12*(n\2+1)^2)/24, ((n+2)^2*(n+1)^2 + 12*(n\2+1)^2+8)/24); \\ Michel Marcus, Mar 18 2014

Formula

If n is a multiple of 3, a(n) = ((n+2)^2*(n+1)^2 + 12*(floor(n/2)+1)^2+8)/24, otherwise a(n) = ((n+2)^2*(n+1)^2 + 12*(floor(n/2)+1)^2)/24. - Frederic Solbes, Mar 18 2014
G.f.: -(x^6+3*x^4+4*x^3+3*x^2+1)/((x^2+x+1)*(x+1)^2*(x-1)^5). - Colin Barker, Mar 27 2014
From Daniel Mondot, Sep 20 2016: (Start)
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) + 2*a(n-6) + a(n-7) - a(n-8) + 12, n>=8.
a(n) = 4*a(n-6) - 6*a(n-12) + 4*a(n-18) - a(n-24) + 1296, n>=24. (End)

Extensions

Extended by Ray Chandler, Dec 17 2008
Edited by Ray Chandler, Dec 19 2008
a(0) = 1 prepended by Daniel Mondot, Sep 20 2016

A101423 Number of different cuboids with volume p^3 * q^n, where p,q are distinct prime numbers.

Original entry on oeis.org

3, 6, 12, 19, 28, 38, 51, 64, 80, 97, 116, 136, 159, 182, 208, 235, 264, 294, 327, 360, 396, 433, 472, 512, 555, 598, 644, 691, 740, 790, 843, 896, 952, 1009, 1068, 1128, 1191, 1254, 1320, 1387, 1456, 1526, 1599, 1672, 1748, 1825, 1904, 1984, 2067, 2150, 2236
Offset: 0

Views

Author

Anthony C Robin, Jan 17 2005

Keywords

Comments

Subsequence of A034836, which gives the number of cuboids for volume n.

Crossrefs

Formula

a(n) = A034836(2^3*3^n) = A034836(3^3*2^n) = A034836(p^3*q^n) for p,q distinct primes.
Empirical g.f.: -(x^3+3*x^2+3*x+3)/((x+1)*(x^2+x+1)*(x-1)^3). - Colin Barker, Mar 28 2014

Extensions

Corrected, edited and extended by Ray Chandler, Dec 19 2008
a(0)=3 prepended and g.f. edited by Alois P. Heinz, Oct 05 2016

A101425 Number of different cuboids with volume p^5 X q^n, where p,q are distinct prime numbers.

Original entry on oeis.org

5, 12, 24, 38, 57, 78, 104, 132, 165, 200, 240, 282, 329, 378, 432, 488, 549, 612, 680, 750, 825, 902, 984, 1068, 1157, 1248, 1344, 1442, 1545, 1650, 1760, 1872, 1989, 2108, 2232, 2358, 2489, 2622, 2760, 2900, 3045, 3192, 3344, 3498, 3657, 3818, 3984, 4152
Offset: 0

Views

Author

Anthony C Robin, Jan 17 2005

Keywords

Comments

Subsequence of A034836, which gives the number of cuboids for volume n.

Crossrefs

Formula

a(n) = A034836(2^5*3^n) = A034836(3^5*2^n) = A034836(p^5*q^n) for p,q distinct primes.
From Colin Barker, Mar 28 2014: (Start)
The following is conjectured.
a(n) = (37+3*(-1)^n+48*n+14*n^2)/8.
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4).
G.f.: -(2*x+5)/((x+1)*(x-1)^3). (End)

Extensions

Edited and extended by Ray Chandler, Dec 19 2008
a(0)=5 prepended and g.f. edited by Alois P. Heinz, Oct 05 2016

A101426 Number of different cuboids with volume p^6 * q^n, where p,q are distinct prime numbers.

Original entry on oeis.org

7, 16, 32, 51, 76, 104, 139, 176, 220, 267, 320, 376, 439, 504, 576, 651, 732, 816, 907, 1000, 1100, 1203, 1312, 1424, 1543, 1664, 1792, 1923, 2060, 2200, 2347, 2496, 2652, 2811, 2976, 3144, 3319, 3496, 3680, 3867, 4060, 4256, 4459, 4664, 4876, 5091, 5312
Offset: 0

Views

Author

Anthony C Robin, Jan 17 2005

Keywords

Comments

Subsequence of A034836, which gives the number of cuboids for volume n.

Crossrefs

Formula

a(n) = A034836(2^6*3^n) = A034836(3^6*2^n) = A034836(p^6*q^n) for p,q distinct primes.
Empirical g.f.: -(3*x^3+9*x^2+9*x+7)/((x+1)*(x^2+x+1)*(x-1)^3). - Colin Barker, Mar 28 2014

Extensions

Edited and extended by Ray Chandler, Dec 19 2008
a(0)=7 prepended and g.f. edited by Alois P. Heinz, Oct 05 2016
Showing 1-4 of 4 results.