A101509 Binomial transform of tau(n) (see A000005).
1, 3, 7, 16, 35, 75, 159, 334, 696, 1442, 2976, 6123, 12562, 25706, 52492, 107014, 217877, 443061, 899957, 1826078, 3701783, 7498261, 15178255, 30706320, 62085915, 125465715, 253415981, 511608490, 1032427637, 2082680887, 4199956101, 8467124805, 17064784905, 34382825363, 69256687719, 139465867773
Offset: 0
Examples
From _Gus Wiseman_, Jan 16 2019: (Start) The a(3) = 16 ways to arrange the parts of an integer partition of 4 into a matrix: [4] [1 3] [3 1] [2 2] [1 1 2] [1 2 1] [2 1 1] [1 1 1 1] . [1] [3] [2] [1 1] [3] [1] [2] [1 1] . [1] [1] [2] [1] [2] [1] [2] [1] [1] . [1] [1] [1] [1] (End)
Links
- M. F. Hasler, Table of n, a(n) for n = 0..500
- L. Manor, M. F. Hasler, Partitions and A101509. SeqFan list, Jan 14 2009
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
Maple
bintr:= proc(p) proc(n) add(p(k) *binomial(n, k), k=0..n) end end: a:= bintr(n-> numtheory[tau](n+1)): seq(a(n), n=0..40); # Alois P. Heinz, Jan 30 2011
-
Mathematica
a[n_] := Sum[DivisorSigma[0, k+1]*Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 18 2017 *)
-
PARI
A101509(n) = sum( k=0,n, numdiv(k+1)*binomial(n,k)) \\ M. F. Hasler, Jan 14 2009
Formula
a(n) = Sum_{k=0..n, Sum_{i=0..n, if(mod(i+1, k+1)=0, binomial(n, i), 0)}}.
G.f.: 1/x * Sum_{n>=1} z^n/(1-z^n) (Lambert series) where z=x/(1-x). - Joerg Arndt, Jan 30 2011
a(n) ~ 2^n * (log(n/2) + 2*gamma), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Mar 07 2020
Comments