A218482
First differences of the binomial transform of the partition numbers (A000041).
Original entry on oeis.org
1, 1, 3, 8, 21, 54, 137, 344, 856, 2113, 5179, 12614, 30548, 73595, 176455, 421215, 1001388, 2371678, 5597245, 13166069, 30873728, 72185937, 168313391, 391428622, 908058205, 2101629502, 4853215947, 11183551059, 25718677187, 59030344851, 135237134812, 309274516740
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 21*x^4 + 54*x^5 + 137*x^6 + 344*x^7 +...
The g.f. equals the product:
A(x) = (1-x)/((1-x)-x) * (1-x)^2/((1-x)^2-x^2) * (1-x)^3/((1-x)^3-x^3) * (1-x)^4/((1-x)^4-x^4) * (1-x)^5/((1-x)^5-x^5) * (1-x)^6/((1-x)^6-x^6) * (1-x)^7/((1-x)^7-x^7) *...
and also equals the series:
A(x) = 1 + x*(1-x)/((1-x)-x)^2 + x^4*(1-x)^2/(((1-x)-x)*((1-x)^2-x^2))^2 + x^9*(1-x)^3/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3))^2 + x^16*(1-x)^4/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3)*((1-x)^4-x^4))^2 +...
Cf.
A000041,
A000219,
A011782,
A055887,
A063834,
A075900,
A098407,
A101509,
A103446,
A129519,
A141199,
A218481.
-
b:= proc(n) option remember;
add(combinat[numbpart](k)*binomial(n,k), k=0..n)
end:
a:= n-> b(n)-b(n-1):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 19 2014
-
Flatten[{1, Table[Sum[Binomial[n-1,k]*PartitionsP[k+1],{k,0,n-1}],{n,1,30}]}] (* Vaclav Kotesovec, Jun 25 2015 *)
-
{a(n)=sum(k=0,n,(binomial(n,k)-if(n>0,binomial(n-1,k)))*numbpart(k))}
for(n=0,40,print1(a(n),", "))
-
{a(n)=local(X=x+x*O(x^n));polcoeff(prod(k=1,n,(1-x)^k/((1-x)^k-X^k)),n)}
-
{a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,x^m*(1-x)^(m*(m-1)/2)/prod(k=1,m,((1-x)^k - X^k))),n)}
-
{a(n)=local(X=x+x*O(x^n));polcoeff(sum(m=0,n,x^(m^2)*(1-X)^m/prod(k=1,m,((1-x)^k - x^k)^2)),n)}
-
{a(n)=local(X=x+x*O(x^n));polcoeff(exp(sum(m=1,n+1,x^m/((1-x)^m-X^m)/m)),n)}
-
{a(n)=local(X=x+x*O(x^n));polcoeff(exp(sum(m=1,n+1,sigma(m)*x^m/(1-X)^m/m)),n)}
-
{a(n)=local(X=x+x*O(x^n));polcoeff(prod(k=1,n,(1 + x^k/(1-X)^k)^valuation(2*k,2)),n)}
A323433
Number of ways to split an integer partition of n into consecutive subsequences of equal length.
Original entry on oeis.org
1, 1, 3, 5, 10, 14, 25, 34, 54, 74, 109, 146, 211, 276, 381, 501, 675, 871, 1156, 1477, 1926, 2447, 3142, 3957, 5038, 6291, 7918, 9839, 12277, 15148, 18773, 23027, 28333, 34587, 42284, 51357, 62466, 75503, 91344, 109971, 132421, 158755, 190365, 227354, 271511
Offset: 0
The a(5) = 14 split partitions:
[5] [4 1] [3 2] [3 1 1] [2 2 1] [2 1 1 1] [1 1 1 1 1]
.
[4] [3] [2 1]
[1] [2] [1 1]
.
[3] [2]
[1] [2]
[1] [1]
.
[2]
[1]
[1]
[1]
.
[1]
[1]
[1]
[1]
[1]
Cf.
A000005,
A000219,
A008284,
A101509,
A316245,
A319066,
A323295,
A323300,
A323307,
A323429,
A323434.
-
b:= proc(n, i, t) option remember; `if`(n=0 or i=1, numtheory
[tau](t+n), b(n, i-1, t)+b(n-i, min(n-i, i), t+1))
end:
a:= n-> `if`(n=0, 1, b(n$2, 0)):
seq(a(n), n=0..50); # Alois P. Heinz, Jan 15 2019
-
Table[Sum[Length[Divisors[Length[ptn]]],{ptn,IntegerPartitions[n]}],{n,30}]
(* Second program: *)
b[n_, i_, t_] := b[n, i, t] = If[n == 0 || i == 1,
DivisorSigma[0, t+n], b[n, i-1, t] + b[n-i, Min[n-i, i], t+1]];
a[n_] := If[n == 0, 1, b[n, n, 0]];
a /@ Range[0, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
-
my(N=66, x='x+O('x^N)); Vec(1+sum(k=1, N, numdiv(k)*x^k/prod(j=1, k, 1-x^j))) \\ Seiichi Manyama, Jan 21 2022
-
my(N=66, x='x+O('x^N)); Vec(1+sum(i=1, N, sum(j=1, N\i, x^(i*j)/prod(k=1, i*j, 1-x^k)))) \\ Seiichi Manyama, Jan 21 2022
A323429
Number of rectangular plane partitions of n.
Original entry on oeis.org
1, 1, 3, 5, 10, 14, 26, 35, 58, 81, 124, 169, 257, 345, 501, 684, 968, 1304, 1830, 2452, 3387, 4541, 6188, 8257, 11193, 14865, 19968, 26481, 35341, 46674, 62007, 81611, 107860, 141602, 186292, 243800, 319610, 416984, 544601, 708690, 922472, 1197018, 1553442
Offset: 0
The a(5) = 14 matrices:
[5] [4 1] [3 2] [3 1 1] [2 2 1] [2 1 1 1] [1 1 1 1 1]
.
[4] [3] [2 1]
[1] [2] [1 1]
.
[3] [2]
[1] [2]
[1] [1]
.
[2]
[1]
[1]
[1]
.
[1]
[1]
[1]
[1]
[1]
-
Table[Sum[Length[Select[Union[Sort/@Tuples[IntegerPartitions[#,{k}]&/@ptn]],And@@OrderedQ/@Transpose[#]&]],{ptn,IntegerPartitions[n]},{k,Min[ptn]}],{n,30}]
A074854
a(n) = Sum_{d|n} (2^(n-d)).
Original entry on oeis.org
1, 3, 5, 13, 17, 57, 65, 209, 321, 801, 1025, 3905, 4097, 12417, 21505, 53505, 65537, 233985, 262145, 885761, 1327105, 3147777, 4194305, 16060417, 17825793, 50339841, 84148225, 220217345, 268435457, 990937089, 1073741825, 3506503681
Offset: 1
Divisors of 6 = 1,2,3,6 and 6-1 = 5, 6-2 = 4, 6-3 = 3, 6-6 = 0. a(6) = 2^5 + 2^4 + 2^3 + 2^0 = 32 + 16 + 8 + 1 = 57.
G.f. = x + 3*x^2 + 5*x^3 + 13*x^4 + 17*x^5 + 57*x^6 + 65*x^7 + ...
a(14) = 1 + 2^7 + 2^12 + 2^13 = 12417. - _Gus Wiseman_, Jun 20 2018
The version looking at lengths instead of sums is
A101509.
The strictly increasing (or strictly decreasing) version is
A304961.
Starting with a partition gives
A317715.
Starting with a strict partition gives
A318683.
Requiring distinct instead of equal sums gives
A336127.
Starting with a strict composition gives
A336130.
Partitions of partitions are
A001970.
Splittings of compositions are
A133494.
Splittings of partitions are
A323583.
-
a[ n_] := If[ n < 1, 0, Sum[ 2^(n - d), {d, Divisors[n]}]] (* Michael Somos, Mar 28 2013 *)
-
a(n)=if(n<1,0,2^n*polcoeff(sum(k=1,n,2/(2-x^k),x*O(x^n)),n))
-
a(n) = sumdiv(n,d, 2^(n-d) ); /* Joerg Arndt, Mar 28 2013 */
a(14) corrected from 9407 to 12417 by
Gus Wiseman, Jun 20 2018
A323858
Number of toroidal necklaces of positive integers summing to n.
Original entry on oeis.org
1, 1, 3, 5, 10, 14, 31, 44, 90, 154, 296, 524, 1035, 1881, 3636, 6869, 13208, 25150, 48585, 93188, 180192, 347617, 673201, 1303259, 2529740, 4910708, 9549665, 18579828, 36192118, 70540863, 137620889, 268655549, 524873503, 1026068477, 2007178821, 3928564237
Offset: 0
Inequivalent representatives of the a(6) = 31 toroidal necklaces:
6 15 24 33 114 123 132 222 1113 1122 1212 11112 111111
.
1 2 3 11 11 12 12 111
5 4 3 13 22 12 21 111
.
1 1 1 2 11
1 2 3 2 11
4 3 2 2 11
.
1 1 1
1 1 2
1 2 1
3 2 2
.
1
1
1
1
2
.
1
1
1
1
1
1
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
Table[Length[Join@@Table[Select[ptnmats[k],neckmatQ],{k,Times@@Prime/@#&/@IntegerPartitions[n]}]],{n,10}]
-
U(n,m,k) = (1/(n*m)) * sumdiv(n, c, sumdiv(m, d, eulerphi(c) * eulerphi(d) * subst(k, x, x^lcm(c,d))^(n*m/lcm(c, d))));
a(n)={if(n < 1, n==0, sum(i=1, n, sum(j=1, n\i, polcoef(U(i, j, x/(1-x) + O(x*x^n)), n))))} \\ Andrew Howroyd, Aug 18 2019
A089299
Number of square plane partitions of n.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 4, 5, 8, 11, 16, 21, 31, 41, 57, 78, 108, 146, 202, 274, 375, 509, 690, 929, 1255, 1679, 2246, 2991, 3979, 5266, 6971, 9187, 12104, 15898, 20870, 27322, 35762, 46690, 60927, 79348, 103270, 134138, 174108, 225576, 291990, 377320, 487083
Offset: 0
a(7) = 5:
7 41 32 31 22
. 11 11 21 21
a(10) = 16 from {{10}}, {{3, 2}, {3, 2}}, {{3, 3}, {2, 2}}, {{3, 3}, {3, 1}}, {{4, 1}, {4, 1}}, {{4, 2}, {2, 2}}, {{4, 2}, {3, 1}}, {{4, 3}, {2, 1}}, {{4, 4}, {1, 1}}, {{5, 1}, {3, 1}}, {{5, 2}, {2, 1}}, {{5, 3}, {1, 1}}, {{6, 1}, {2, 1}}, {{6, 2}, {1, 1}}, {{7, 1}, {1, 1}}, {{2, 1, 1}, {1, 1, 1}, {1, 1, 1}}
From _Gus Wiseman_, Jan 16 2019: (Start)
The a(10) = 16 square plane partitions:
[ten]
.
[32] [33] [33] [41] [42] [42] [43] [44] [51] [52] [53] [61] [62] [71]
[32] [22] [31] [41] [22] [31] [21] [11] [31] [21] [11] [21] [11] [11]
.
[211]
[111]
[111]
(End)
-
Table[Sum[Length[Select[Union[Sort/@Tuples[IntegerPartitions[#,{Length[ptn]}]&/@ptn]],And@@OrderedQ/@Transpose[#]&]],{ptn,IntegerPartitions[n]}],{n,30}] (* Gus Wiseman, Jan 16 2019 *)
A160399
a(n) = Sum_{k=1..n} binomial(n,k) * d(k), where d(k) = the number of positive divisors of k.
Original entry on oeis.org
1, 4, 11, 27, 62, 137, 296, 630, 1326, 2768, 5744, 11867, 24429, 50135, 102627, 209641, 427518, 870579, 1770536, 3596614, 7298397, 14796658, 29974913, 60681233, 122767148, 248232863, 501648844, 1013257334, 2045684971
Offset: 1
-
List([1..10^3], n -> Sum([1..n], k -> Binomial(n,k) * Number(DivisorsInt(k)))); # Muniru A Asiru, Feb 04 2018
-
[&+[Binomial(n,k)*NumberOfDivisors(k):k in [1..n]]:n in [1..30]]; // Marius A. Burtea, Nov 12 2019
-
[&+[&+[Binomial(n,i*j):j in [1..n]]:i in [1..n]]:n in [1..31]]; // Marius A. Burtea, Nov 12 2019
-
with(numtheory): seq(sum(binomial(n, k)*tau(k), k = 1 .. n), n = 1 .. 30); # Emeric Deutsch, May 15 2009
A160399 := proc(n) local k; add(binomial(n,k)*numtheory[tau](k),k=1..n) ; end: seq(A160399(n),n=1..40) ; # R. J. Mathar, May 17 2009
-
a[n_] := Sum[Binomial[n, k]*DivisorSigma[0, k], {k, 1, n}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 25 2017 *)
-
a(n) = sum(k=1, n, binomial(n, k)*numdiv(k)); \\ Michel Marcus, Feb 25 2017
A323867
Number of aperiodic arrays of positive integers summing to n.
Original entry on oeis.org
1, 1, 1, 5, 11, 33, 57, 157, 303, 683, 1358, 2974, 5932, 12560, 25328, 52400, 106256, 217875, 441278, 899955, 1822703, 3701401, 7491173, 15178253, 30691135, 62085846, 125435689, 253414326, 511547323, 1032427635, 2082551931, 4199956099, 8466869525, 17064777665
Offset: 0
The a(5) = 33 arrays:
5 14 23 32 41 113 122 131 212 221 311 1112 1121 1211 2111
.
1 2 3 4 11 11 12 21
4 3 2 1 12 21 11 11
.
1 1 1 2 2 3
1 2 3 1 2 1
3 2 1 2 1 1
.
1 1 1 2
1 1 2 1
1 2 1 1
2 1 1 1
-
List([0..30], A323867); # See A323861 for code; Andrew Howroyd, Aug 21 2019
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
Table[Length[Union@@Table[Select[ptnmats[k],apermatQ],{k,Times@@Prime/@#&/@IntegerPartitions[n]}]],{n,15}]
A306988
a(n) = Sum_{k=1..n} binomial(n,k)*phi(k), where phi is the Euler totient function.
Original entry on oeis.org
1, 3, 8, 20, 49, 117, 272, 620, 1395, 3107, 6852, 14964, 32395, 69647, 149002, 317712, 675749, 1433769, 3033444, 6396320, 13437913, 28130869, 58708304, 122239396, 254141275, 527946013, 1096312050, 2275897660, 4722500707, 9791471587, 20277706762, 41932520528
Offset: 1
-
Table[Sum[Binomial[n, k]*EulerPhi[k], {k, 1, n}], {n, 1, 40}]
A323430
Number of rectangular plane partitions of n with strictly decreasing rows and columns.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 7, 9, 12, 16, 22, 27, 36, 44, 57, 72, 89, 110, 139, 170, 210, 261, 318, 390, 478, 581, 705, 860, 1036, 1252, 1511, 1816, 2178, 2618, 3127, 3743, 4471, 5330, 6347, 7564, 8984, 10674, 12669, 15016, 17780, 21050, 24868, 29371, 34655, 40836, 48080
Offset: 0
The a(8) = 12 matrices:
[8] [7 1] [6 2] [5 3] [5 2 1] [4 3 1]
.
[7] [6] [5] [3 2]
[1] [2] [3] [2 1]
.
[5] [4]
[2] [3]
[1] [1]
The a(10) = 22 matrices:
[10] [9 1] [8 2] [7 3] [7 2 1] [6 4] [6 3 1] [5 4 1] [5 3 2] [4 3 2 1]
.
[9] [8] [7] [6] [5 2] [4 2] [4 3]
[1] [2] [3] [4] [2 1] [3 1] [2 1]
.
[7] [6] [5] [5]
[2] [3] [4] [3]
[1] [1] [1] [2]
.
[4]
[3]
[2]
[1]
-
Table[Sum[Length[Select[Union[Tuples[Select[IntegerPartitions[#,{k}],UnsameQ@@#&]&/@ptn]],And@@(OrderedQ[#,Greater]&/@Transpose[#])&]],{ptn,IntegerPartitions[n]},{k,Min[ptn]}],{n,30}]
Showing 1-10 of 22 results.
Comments