cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A308564 Expansion of e.g.f. Sum_{k>=1} phi(k)*(exp(x) - 1)^k/k!, where phi = Euler totient function (A000010).

Original entry on oeis.org

1, 2, 6, 22, 90, 404, 1974, 10366, 57864, 341690, 2134022, 14104624, 98498972, 723664482, 5561589508, 44473028634, 368602225688, 3159852790392, 27997141025686, 256410638073082, 2428063270357748, 23774001479212114, 240580239864321604, 2513553050765310236
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 07 2019

Keywords

Comments

Stirling transform of A000010.

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; uses numtheory;
         `if`(n=0, phi(m), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=1..24);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    nmax = 24; Rest[CoefficientList[Series[Sum[EulerPhi[k] (Exp[x] - 1)^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!]
    nmax = 24; Rest[CoefficientList[Series[Sum[EulerPhi[k] x^k/Product[(1 - j x), {j, 1, k}], {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[StirlingS2[n, k] EulerPhi[k], {k, 1, n}], {n, 1, 24}]

Formula

G.f.: Sum_{k>=1} phi(k)*x^k / Product_{j=1..k} (1 - j*x).
a(n) = Sum_{k=1..n} Stirling2(n,k)*phi(k).

A324913 a(n) = Sum_{k=1..n} 2^k * phi(k), where phi is the Euler totient function A000010.

Original entry on oeis.org

2, 6, 22, 54, 182, 310, 1078, 2102, 5174, 9270, 29750, 46134, 144438, 242742, 504886, 1029174, 3126326, 4699190, 14136374, 22524982, 47690806, 89633846, 274183222, 408400950, 1079489590, 1884795958, 4300715062, 7521940534, 22554326070, 31144260662, 95568770102
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 18 2019

Keywords

Crossrefs

Programs

  • Maple
    ListTools:-PartialSums([seq(2^k * numtheory:-phi(k),k=1..50)]); # Robert Israel, Apr 17 2025
  • Mathematica
    Accumulate[Table[2^k*EulerPhi[k], {k, 1, 40}]]

A356340 a(n) = Sum_{k=1..n} binomial(2*n, n-k) * phi(k), where phi is the Euler totient function.

Original entry on oeis.org

1, 5, 23, 102, 444, 1909, 8133, 34404, 144714, 605920, 2527348, 10507978, 43569096, 180219699, 743907057, 3065019864, 12607648238, 51783970314, 212412697368, 870249992168, 3561502879100, 14560944187796, 59476980459794, 242741090637012, 989921853052930, 4034101567907172
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n, n-k]*EulerPhi[k], {k, 1, n}], {n, 1, 30}]
  • PARI
    a(n) = sum(k=1, n, binomial(2*n, n-k) * eulerphi(k)); \\ Michel Marcus, Aug 05 2022

Formula

a(n) ~ 3 * sqrt(n) * 4^n / Pi^(5/2).

A330148 a(n) = Sum_{k=1..n} binomial(n,k) * phi(k) * phi(n - k + 1), where phi = A000010.

Original entry on oeis.org

1, 3, 11, 30, 94, 238, 692, 1596, 4536, 9350, 27840, 52884, 149668, 294838, 782432, 1463224, 4095792, 7460274, 20229356, 36847380, 100317284, 170262974, 492659240, 814679680, 2184447760, 3965791284, 9988168320, 17883230712, 49362800340, 80674575956, 213420581248
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 03 2019

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n,k)*EulerPhi(k)*EulerPhi(n-k+1):k in [1..n]]:n in [1..30]]; // Marius A. Burtea, Dec 03 2019
    
  • Mathematica
    Table[Sum[Binomial[n, k] EulerPhi[k] EulerPhi[n - k + 1], {k, 1, n}], {n, 1, 31}]
    nmax = 31; CoefficientList[Series[(1/2) D[Sum[EulerPhi[k] x^k/k!, {k, 1, nmax}]^2, x], {x, 0, nmax}], x] Range[0, nmax]! // Rest
  • PARI
    a(n) = sum(k=1, n, binomial(n,k)*eulerphi(k)*eulerphi(n-k+1)); \\ Michel Marcus, Dec 03 2019

Formula

E.g.f.: (1/2) * d/dx (Sum_{k>=1} phi(k) * x^k / k!)^2.

A356343 a(n) = Sum_{k=1..n} binomial(2*n, k) * phi(k), where phi is the Euler totient function.

Original entry on oeis.org

2, 10, 61, 288, 1723, 6524, 37441, 158504, 737019, 2867500, 15200293, 56951428, 291648771, 1141099348, 4686310739, 19016248192, 95307214595, 358297247772, 1748879020425, 6725041736572, 27649247188159, 108460437728204, 522912325647543, 1966622896068784, 8831400010510925
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n, k]*EulerPhi[k], {k, 1, n}], {n, 1, 30}]
  • PARI
    a(n) = sum(k=1, n, binomial(2*n, k) * eulerphi(k)); \\ Michel Marcus, Aug 05 2022

Formula

a(n) ~ 3 * n * 4^n / Pi^2.

A356346 a(n) = Sum_{k=1..n} binomial(2*k, k) * phi(k), where phi is the Euler totient function.

Original entry on oeis.org

2, 8, 48, 188, 1196, 3044, 23636, 75116, 366836, 1105860, 8160180, 18976804, 143784004, 384483604, 1625423764, 6434066884, 43771766404, 98222578204, 734437326604, 1837209557164, 8296304050444, 29337293687644, 210472769694844, 468453599159644, 2996665727914684
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 04 2022

Keywords

Comments

The average value of a(n) is sqrt(n) * 2^(2*n+3) / Pi^(5/2).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k, k]*EulerPhi[k], {k, 1, n}], {n, 1, 30}]
  • PARI
    a(n) = sum(k=1, n, binomial(2*k, k) * eulerphi(k)); \\ Michel Marcus, Aug 05 2022
Showing 1-6 of 6 results.