cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A351146 a(n) = Sum_{k=1..n} binomial(2*n,n+k)*A000005(k).

Original entry on oeis.org

1, 6, 29, 131, 572, 2448, 10341, 43288, 180003, 744712, 3068793, 12605411, 51642528, 211110240, 861409918, 3509341245, 14277424978, 58017460260, 235512889296, 955146370152, 3870511127394, 15672817355658, 63421721139479, 256488917828150, 1036722699748068, 4188329011110360
Offset: 1

Views

Author

Hugo Pfoertner, Feb 02 2022

Keywords

References

  • D. E. Knuth, The Art of Computer Programming Second Edition. Vol. 3, Sorting and Searching. Chapter 5.2.2 Sorting by Exchanging, pages 138 (exercise 52), 637 (answer to exercise). Addison-Wesley, Reading, MA, 1998.

Crossrefs

Diagonal of A351145.

Programs

  • Mathematica
    Table[Sum[Binomial[2*n, n + k] * DivisorSigma[0, k], {k, 1, n}], {n,1,20}] (* Vaclav Kotesovec, Aug 04 2022 *)
  • PARI
    a(n) = sum(k=1, n, binomial(2*n, n+k)*numdiv(k)); \\ Michel Marcus, Feb 02 2022

Formula

a(n) = A351145(n,n).
a(n) ~ 4^(n-1) * (log(n/4) + 3*gamma + 1/sqrt(Pi*n)) [Knuth, 1998]. - Vaclav Kotesovec, Aug 04 2022
Showing 1-1 of 1 results.