cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A351145 Triangle T(n,m) read by rows: Sum_{k=1..m} binomial(2*n, n+k)*d(k), m<=n, with d(k)=A000005(k).

Original entry on oeis.org

1, 4, 6, 15, 27, 29, 56, 112, 128, 131, 210, 450, 540, 570, 572, 792, 1782, 2222, 2420, 2444, 2448, 3003, 7007, 9009, 10101, 10283, 10339, 10341, 11440, 27456, 36192, 41652, 42772, 43252, 43284, 43288, 43758, 107406, 144534, 170238, 176358, 179622, 179928, 180000, 180003
Offset: 1

Views

Author

Hugo Pfoertner, Feb 02 2022

Keywords

Comments

Exercise 52 in chapter 5.2.2 of Knuth's TAOCP 3 asks: "What is the asymptotic behavior of the sum S_n = Sum_{t>=1} binomial(2n,n+t)*d(t)?" and mentions "This question arises in connection with the analysis of a tree traversal algorithm, exercise 2.3.1-11."

Examples

			The triangle begins:
      1;
      4,     6;
     15,    27,    29;
     56,   112,   128,   131;
    210,   450,   540,   570,   572;
    792,  1782,  2222,  2420,  2444,  2448;
   3003,  7007,  9009, 10101, 10283, 10339, 10341;
  11440, 27456, 36192, 41652, 42772, 43252, 43284, 43288;
		

References

  • D. E. Knuth, The Art of Computer Programming Second Edition. Vol. 3, Sorting and Searching. Chapter 5.2.2 Sorting by Exchanging, pages 138, 637 (answer to exercise 52). Addison-Wesley, Reading, MA, 1998.

Crossrefs

Cf. A000005, A001791 (first column), A351146 (diagonal).

Programs

  • Mathematica
    T[n_, m_] := Sum[Binomial[2*n, n + k] * DivisorSigma[0, k], {k, 1, m}]; Table[T[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Amiram Eldar, Feb 02 2022 *)
  • PARI
    for(n=1,10,for(m=1,n,my(s=sum(t=1,m,binomial(2*n,n+t)*numdiv(t)));print1(s,", ")))

A356338 a(n) = Sum_{k=1..n} binomial(2*n, n-k) * sigma(k).

Original entry on oeis.org

1, 7, 37, 179, 826, 3703, 16283, 70619, 303121, 1290682, 5460511, 22981019, 96296552, 402024497, 1673116072, 6944105579, 28752345362, 118801061059, 489959398840, 2017339105514, 8293732341134, 34051489445365, 139634028015269, 571955737066307, 2340402722605976, 9567794393004816
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n, n-k]*DivisorSigma[1, k], {k, 1, n}], {n, 1, 30}]
  • PARI
    a(n) = sum(k=1, n, binomial(2*n, n-k) * sigma(k)); \\ Michel Marcus, Aug 05 2022

Formula

a(n) ~ Pi^(3/2) * 4^(n-1) * sqrt(n) / 3.

A356339 a(n) = Sum_{k=1..n} binomial(2*n, n-k) * sigma_2(k).

Original entry on oeis.org

1, 9, 55, 297, 1496, 7215, 33783, 154825, 698077, 3107424, 13690161, 59802471, 259377080, 1118176887, 4795381640, 20472223529, 87051685546, 368857919085, 1558036408998, 6562564601592, 27571934249754, 115574440020477, 483444570596465, 2018365519396135, 8411811012694246
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n, n-k]*DivisorSigma[2, k], {k, 1, n}], {n, 1, 30}]
  • PARI
    a(n) = sum(k=1, n, binomial(2*n, n-k) * sigma(k, 2)); \\ Michel Marcus, Aug 05 2022

Formula

a(n) ~ zeta(3) * n * 4^(n-1).

A356340 a(n) = Sum_{k=1..n} binomial(2*n, n-k) * phi(k), where phi is the Euler totient function.

Original entry on oeis.org

1, 5, 23, 102, 444, 1909, 8133, 34404, 144714, 605920, 2527348, 10507978, 43569096, 180219699, 743907057, 3065019864, 12607648238, 51783970314, 212412697368, 870249992168, 3561502879100, 14560944187796, 59476980459794, 242741090637012, 989921853052930, 4034101567907172
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n, n-k]*EulerPhi[k], {k, 1, n}], {n, 1, 30}]
  • PARI
    a(n) = sum(k=1, n, binomial(2*n, n-k) * eulerphi(k)); \\ Michel Marcus, Aug 05 2022

Formula

a(n) ~ 3 * sqrt(n) * 4^n / Pi^(5/2).

A356341 a(n) = Sum_{k=1..n} binomial(2*n, k) * sigma(k).

Original entry on oeis.org

2, 22, 131, 806, 3607, 20395, 84254, 422230, 1842359, 8616007, 33843614, 173724659, 676938316, 2983855666, 12806013721, 57981927158, 223432922515, 1040923729567, 4004885305320, 18277809794671, 75668287229078, 317458937099194, 1215454524390767, 5785782106653667
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n, k]*DivisorSigma[1, k], {k, 1, n}], {n, 1, 30}]
  • PARI
    a(n) = sum(k=1, n, binomial(2*n, k) * sigma(k)); \\ Michel Marcus, Aug 05 2022

Formula

a(n) ~ Pi^2 * n * 4^(n-1) / 3.

A356342 a(n) = Sum_{k=1..n} binomial(2*n, k) * sigma_2(k).

Original entry on oeis.org

2, 34, 281, 2178, 12397, 79729, 398932, 2224354, 10959221, 56341309, 255685080, 1334248401, 5892916876, 28082515768, 127714609741, 604178948098, 2590365128017, 12284868071365, 52160408294826, 241445420212893, 1049251819301974, 4674022621994716, 19563451165603647
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n, k]*DivisorSigma[2, k], {k, 1, n}], {n, 1, 30}]
  • PARI
    a(n) = sum(k=1, n, binomial(2*n, k) * sigma(k, 2)); \\ Michel Marcus, Aug 05 2022

Formula

a(n) ~ zeta(3) * n^2 * 2^(2*n-1).

A356344 a(n) = Sum_{k=1..n} binomial(2*k, k) * sigma(k).

Original entry on oeis.org

2, 20, 100, 590, 2102, 13190, 40646, 233696, 865756, 4191364, 12656548, 88372916, 233981316, 1196779716, 4919600196, 23553092286, 65558004246, 419488280946, 1126393556946, 6915947767386, 24140199749466, 99887762443386, 297490099905786, 2232346320891786, 6151075120462098
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 04 2022

Keywords

Comments

The average value of a(n) is Pi^(3/2) * sqrt(n) * 2^(2*n+1) / 9.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k, k]*DivisorSigma[1, k], {k, 1, n}], {n, 1, 30}]
  • PARI
    a(n) = sum(k=1, n, binomial(2*k, k) * sigma(k)); \\ Michel Marcus, Aug 05 2022

A356345 a(n) = Sum_{k=1..n} binomial(2*k, k) * sigma_2(k).

Original entry on oeis.org

2, 32, 232, 1702, 8254, 54454, 226054, 1320004, 5744424, 29762704, 115825408, 683698168, 2451800168, 12480950168, 52811505368, 257779918358, 934525722158, 5063712283658, 17858697779258, 93122902514978, 362251839734978, 1645752207604178, 6009470493232178, 33419933623867178
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 04 2022

Keywords

Comments

The average value of a(n) is zeta(3) * n^(3/2) * 4^(n+1) / (3*sqrt(Pi)).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k, k]*DivisorSigma[2, k], {k, 1, n}], {n, 1, 30}]
  • PARI
    a(n) = sum(k=1, n, binomial(2*k, k) * sigma(k, 2)); \\ Michel Marcus, Aug 05 2022

A356372 a(n) = Sum_{k=1..n} binomial(2*n, k) * A000005(k).

Original entry on oeis.org

2, 16, 76, 386, 1474, 7349, 26807, 121964, 487068, 2105087, 7486505, 37278746, 133488216, 550615531, 2263230587, 9856735046, 35168418266, 160420872009, 573578559659, 2582163925152, 10333237435638, 41122278086361, 146621866522577, 712999981650663, 2702556741014621
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*n, k]*DivisorSigma[0, k], {k, 1, n}], {n, 1, 30}]
  • PARI
    a(n) = sum(k=1, n, binomial(2*n, k) * numdiv(k)); \\ Michel Marcus, Aug 05 2022

Formula

a(n) ~ 2^(2*n-1) * (log(n) + 2*gamma), where gamma is the Euler-Mascheroni constant A001620.

A356373 a(n) = Sum_{k=1..n} binomial(2*k, k) * A000005(k).

Original entry on oeis.org

2, 14, 54, 264, 768, 4464, 11328, 62808, 208668, 947692, 2358556, 18583492, 39384692, 199851092, 820321172, 3825723122, 8492935562, 62943747362, 133634274962, 960713447882, 3113744945642, 11530140800522, 27997002255722, 285977831720522, 665209651033778, 2648883782826194
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k, k]*DivisorSigma[0, k], {k, 1, n}], {n, 1, 30}]
  • PARI
    a(n) = sum(k=1, n, binomial(2*k, k) * numdiv(k)); \\ Michel Marcus, Aug 05 2022
Showing 1-10 of 10 results.