cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101553 A modular recurrence.

Original entry on oeis.org

1, 5, 15, 75, 225, 1125, 3375, 16875, 50625, 253125, 759375, 3796875, 11390625, 56953125, 170859375, 854296875, 2562890625, 12814453125, 38443359375, 192216796875, 576650390625, 2883251953125, 8649755859375, 43248779296875
Offset: 0

Views

Author

Paul Barry, Dec 06 2004

Keywords

Comments

Interpolated zeros suppressed.

Programs

  • Magma
    I:=[1,5]; [n le 2 select I[n] else 15*Self(n-2): n in [1..30]]; // G. C. Greubel, Apr 16 2018
  • Maple
    a:=n->mul(4-(-1)^j,j=1..n):seq(a(n),n=0..23); # Zerinvary Lajos, Dec 13 2008
  • Mathematica
    CoefficientList[Series[(1+5x)/(1-15x^2),{x,0,30}],x] (* or *) LinearRecurrence[ {0,15},{1,5},30] (* Harvey P. Dale, Oct 14 2013 *)
    RecurrenceTable[{a[n] == (3 + 2*Mod[n/2, 2])*a[n - 2], a[0] == 1, a[1] == 0}, a, {n, 0, 50}][[1 ;; ;; 2]] (* G. C. Greubel, Apr 16 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+5*x)/(1-15*x^2))  \\ G. C. Greubel, Apr 16 2018
    

Formula

a(n) = b(2*n) where b(0)=1, b(1)=0, b(n) = (3 + 2*(n/2 mod 2))*b(n-2).
a(n) = A100747(2(n+1))/3.
a(2n) = 15^n, a(2n+1) = 5*15^n. - Ralf Stephan, May 16 2007
O.g.f.: (1+5*x)/(1-15*x^2). - Philippe Deléham, Dec 02 2011